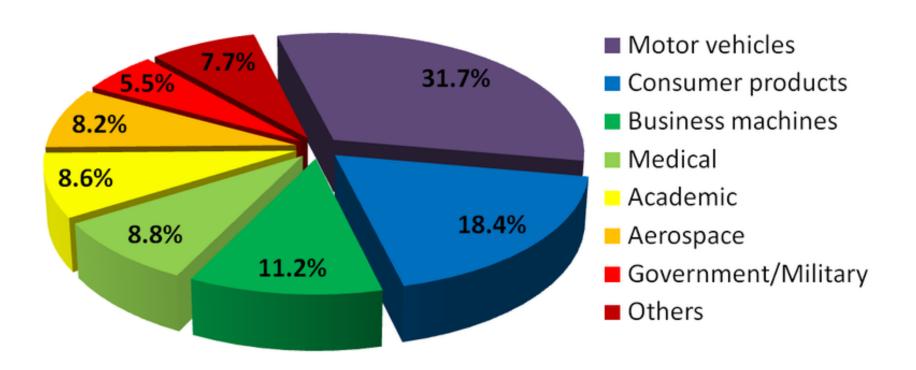
## Softwares for 3D printing







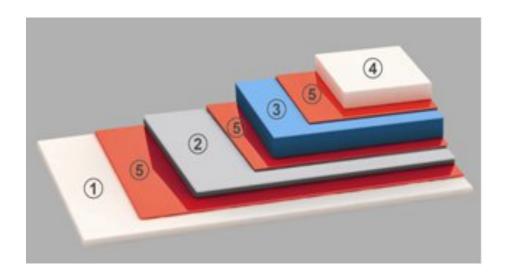

carmelo. de maria @centropiaggio. unipi. it

#### 3D world

A picture says than 1000 words ... ... a model tells the whole story



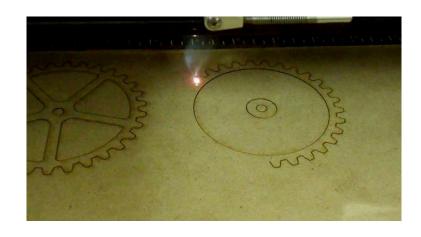
#### Rapid Prototyping by Industry Sectors:

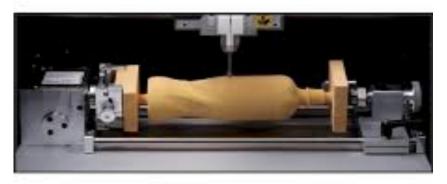





## Tecnologie 3D

- Sottrattive
- Additive



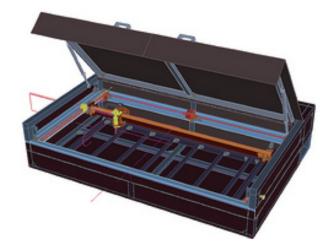




#### Subtractive technologies

- Laser cutter
- CNC milling machines







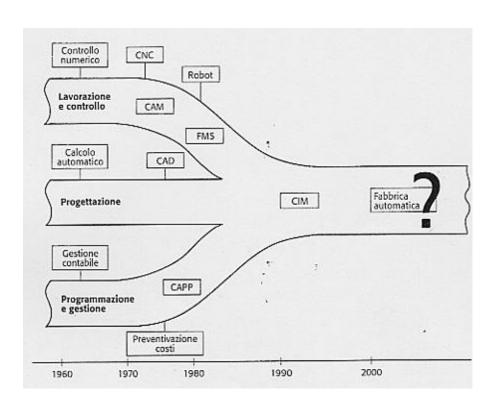

## Open Subtractive technologies

- Laser cutter
- CNC milling machines



www.buildyourcnc.com



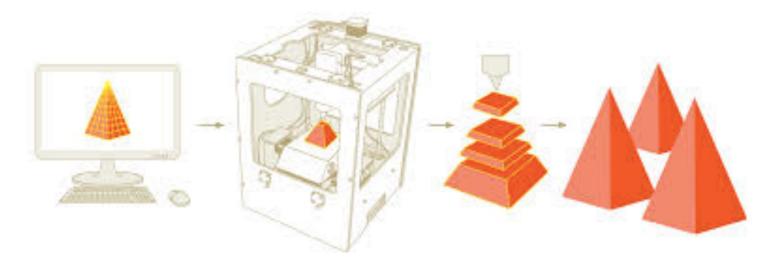



http://labs.nortd.com/lasersaur/

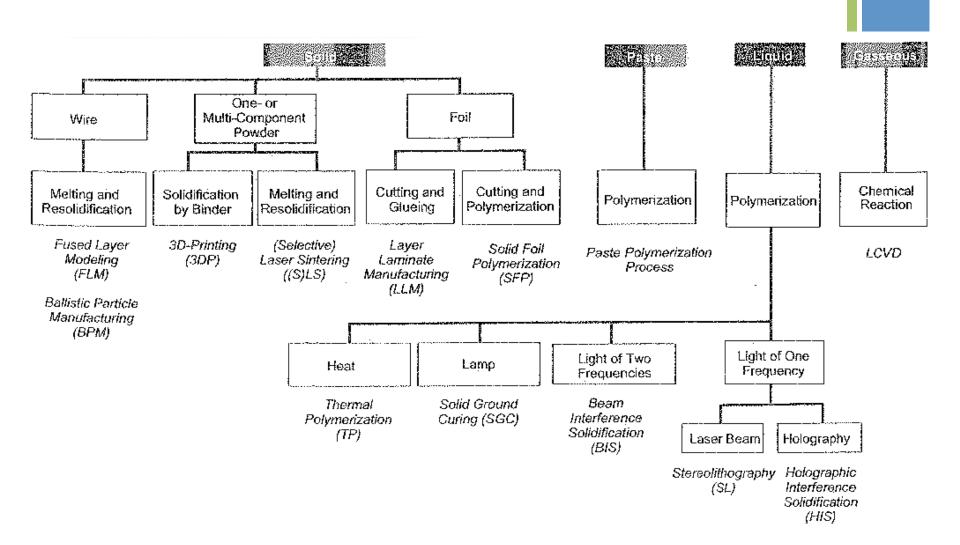


#### Tecnologie CAx

- CAD Computer Aided Design
- CAE Computer Aided Engineering
- CAM Computer Aided Manufacturing
- CAPP Computer Aided Process
   Planning
- CIM Computer Integrated
   Manufacturing

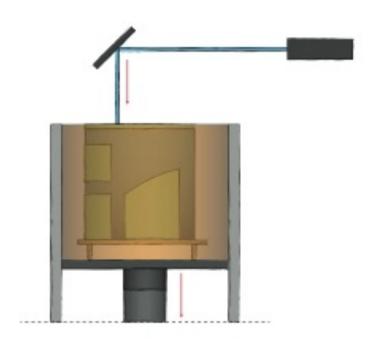


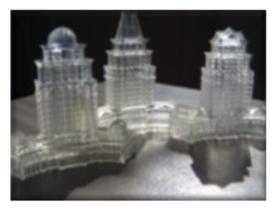

## 3D printing


- 3D printing (or Additive Manufacturing) is a process of making a three-dimensional solid object of virtually any shape from a digital model.
- 3D printing is achieved using an <u>additive</u> <u>process</u>, where successive <u>layers of</u> <u>material</u> are laid down in different shapes.

## 3D printing

- 3D printing (or Additive Manufacturing) is a process of making a three-dimensional solid object of virtually any shape from a digital model.
- 3D printing is achieved using an <u>additive process</u>, where successive <u>layers of material</u> are laid down in different shapes.

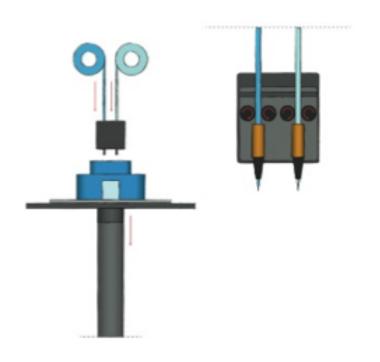




## Una possibile classificazione





- Solidification of liquid materials
  - Photo-polymerization process





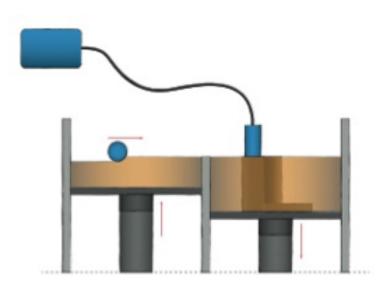





- Generation from the solid phase:
  - incipiently or completely melted solid materials, powder, or powder mixtures:
    - Extrusion (FDM),
    - Ballistic and
    - Sintering processes






- Generation from the solid phase:
  - incipiently or completely melted solid materials, powder, or powder mixtures:
    - Extrusion (FDM),
    - Ballistic and
    - Sintering processes





- Generation from the solid phase:
  - Conglutination of granules or powders by additional binders
    - 3D inkjet printer

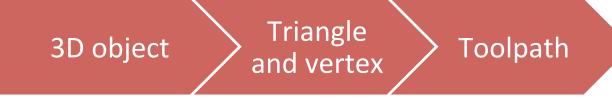




#### RAPID PROTOTYPING

## Rapid Prototyping Process Flow

- Solid Modelling
- Tesselation/Generation of STL file
- Support Generation
- "Slicing" of the Model
- Model Physical Buildup
- Cleanup and Post Curing
- Surface Finishing



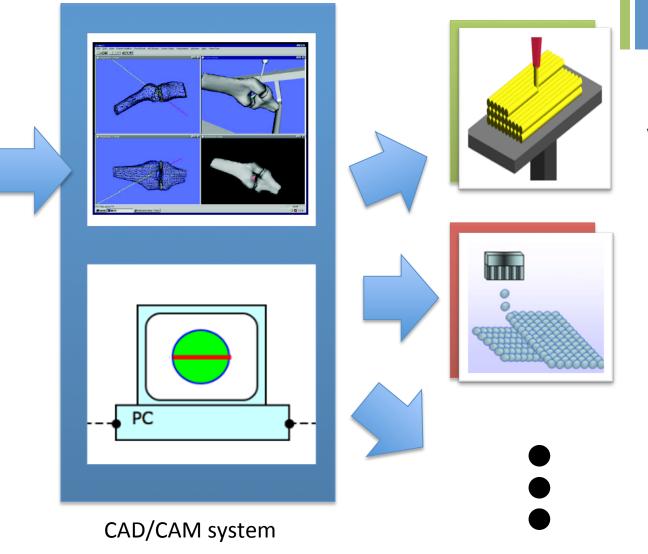

## Rapid Prototyping Process Flow

File



Description




Software



## Rapid Prototyping Process Flow



Image acquisition



Direct writing

Inkjet based



### Sorgenti dati

- Dati di tipo volumetrico
  - Modello CAD
  - Provenienti da strumentazione
    - CT
    - RM



#### Modello CAD

| Dimensions of CAD Elements | Elements     | Type of CAD Model     |
|----------------------------|--------------|-----------------------|
| 0D                         | Point        | Corner Model          |
| 1D                         | Line         | Edge Model            |
| 2D                         | Surface      | Surface Model         |
| 3D                         | Solid/Volume | Solid or Volume Model |

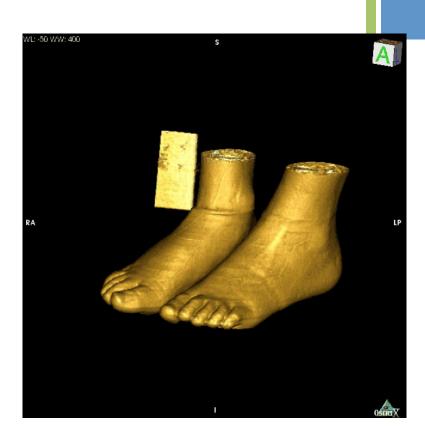
Esempio

#### DA IMMAGINI MEDICHE A STL



#### Segmentazione

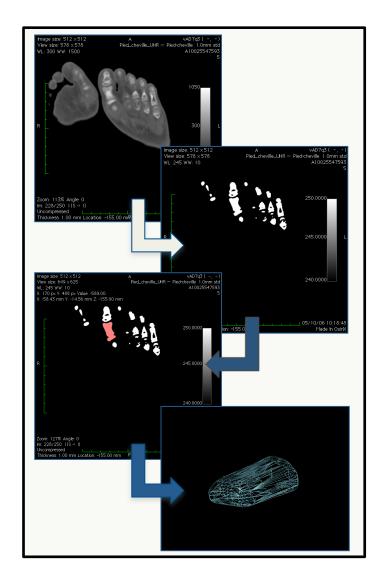
- Segmentation subdivides an image into its constituent regions or objects.
- The level to whhc the subdivision is carried out depends on the problem being solved


# + Software per l'analisi delle bioimmagini

- OsiriX (<u>www.osirix-viewer.com</u>)
- 3DSlicer (www.slicer.org)
- ImageJ (<u>rsb.info.nih.gov/ij</u>)
- MIPAV (<u>mipav.cit.nih.gov</u>)
- itk-SNAP (www.itksnap.org)

## + Image Analysis: OxiriX imaging software

- Advanced open-source
   DICOM PACS workstation
- Image processing
- Better communication with surgeons



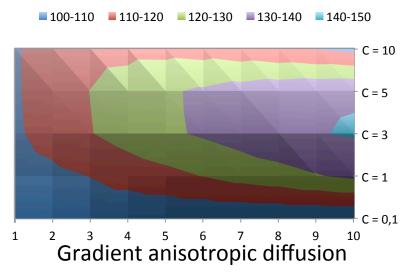


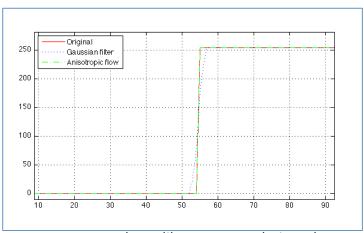










- From original CT DICOM image to final volume
- Semi-automatic procedure
- Positive results in 95% of cases

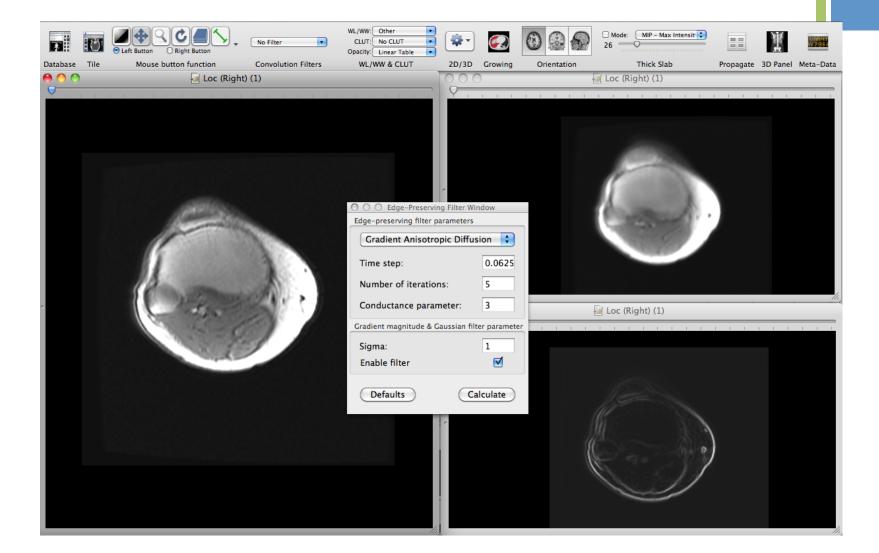



# Osirix Plugins: edge preserving smoothing



- Analogy between "heat diffusion" and image blurring
- Preserve edges varying "heat conductivity" in accord to image region:
  - Gradient anisotropic diffusion,
  - Curvature anisotropic diffusion,
  - Curvature flow
- Filters performance assessment






P Perona and J Malik. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 12(7):629–639, 1990



# Osirix Plugins: edge preserving smoothing





## Osirix Plugins: Level-Set segmentation

Model

OSIRIX

- Two algorithm
  - Shape detection
  - Geodesic Active Contours
- Evolution based on
  - Propagation
  - Curvature
  - Advection

 $\frac{d}{dt}\psi = -\alpha \mathbf{A}(\mathbf{x}) \cdot \nabla \psi - \beta P(\mathbf{x}) |\nabla \psi| + \gamma Z(\mathbf{x}) \kappa |\nabla \psi|$ 

<<interface>>
Observer

+update()

Controller

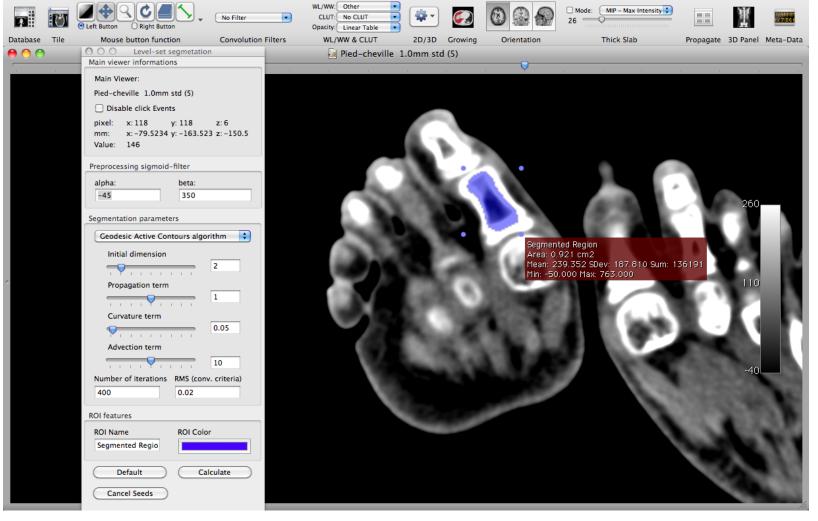
Programming principles

LSSegmentationFilter

LSSegmentationController

PluginInterface

ITKLSSegmetation3D


**ITKLSImageWrapper** 

R Malladi et al. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 17(2):158 – 175, Feb 1995. V Caselles et al. International Journal of Computer Vision, 22(1):61–79, 1997.



## Osirix Plugins: Level-Set segmentation





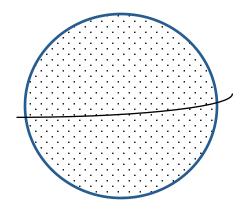
#### **EXCHANGE FORMATS**

## Stereolithograpy Interface

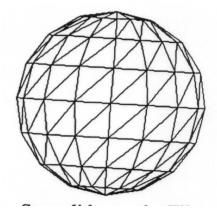
- Stereolithograpy was first commercial Solid Freeform Manufacturing (SFM) process, released in 80's by 3-D Systems
- 3-D Systems developed interface between CAD systems and their machine
- STL files (\*.stl) allow CAD systems to interface with 3-D system machines
- Virtually all subsequent SFM processes can use this same format (SFM industry standard)
- Many CAD programs now can export the \*.stl file for easy conversion from CAD to part

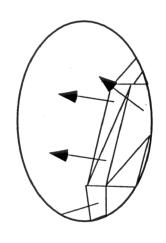
### STL Files (\*.stl)

- STL files were based on a program called Silverscreen CAD
- Silverscreen CAD represent boundary with all surfaces being approximated by polygons or groups of polygons
- \*.stl files use triangles or groups of triangles to approximate surfaces
- Accuracy depends on the triangle sizes (Smaller facets produce a higher quality surface)
- Triangles assigned normal vectors for outward surface normal
- Parts are defined by representing all their bounding surfaces as faceted surfaces, using the triangular patches


#### + STL Files (\*.stl)

- STL files describe only the surface geometry of a three dimensional object without any representation of color, texture or other common CAD model attributes.
- An STL file describes a raw unstructured triangulated surface by the unit normal and vertices (ordered by the right-hand rule) of the triangles using a threedimensional Cartesian coordinate system.




## Example of \*.stl Representation



Representing a sphere



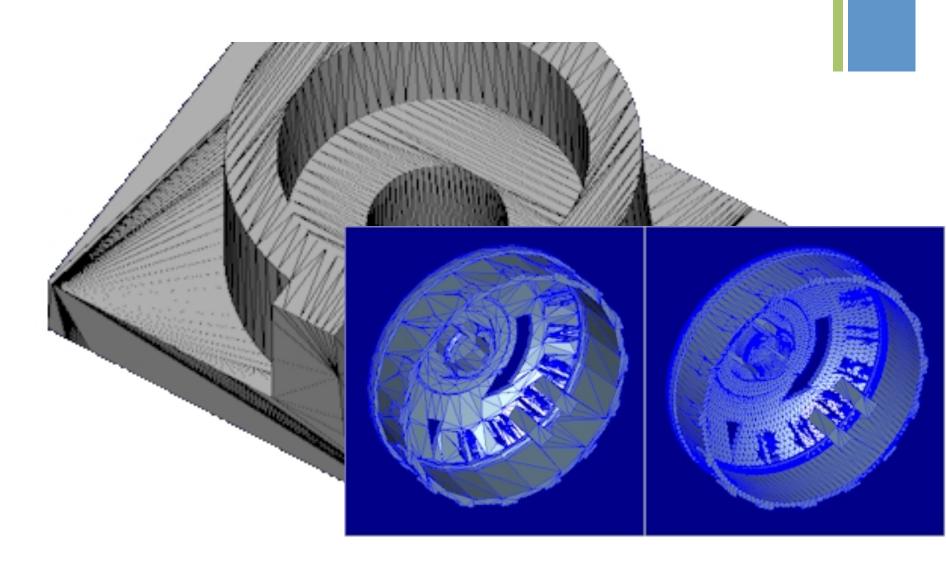


#### solid obj1

facet normal 1.457591e-01 -9.885599e-01 -3.877669e-02 outer loop

vertex 9.614203e+00 4.757629e+00 0.000000e+00 vertex 7.875000e+00 4.501190e+00 0.000000e+00 vertex 9.483117e+00 4.764183e+00 -6.598330e-01 endloop

#### endfacet


facet normal 1.161178e-01 -9.870778e-01 -1.104267e-01 outer loop

vertex 9.483117e+00 4.764183e+00 -6.598330e-01 vertex 7.875000e+00 4.501190e+00 0.000000e+00 vertex 9.109818e+00 4.782848e+00 -1.219212e+00 endloop

#### endfacet

facet normal 6.134766e-02 -9.843393e-01 -1.652652e-01

## Example of \*.stl Representation





## Existing Formats (1/2)

- 3D PDF
  - Proprietary, closed
- ISO 14649 (STEP-NC)
  - Mostly for NC control, G-Code
- STEP / IGES, SAT, Parasolid
  - Too complex, missing features e.g. no mesostructure
- X3D VRML
  - Mesh, color, texture, lighting



# Existing Formats (2/2)

- PLY
  - 3D Scanner data
- 3DS
  - Limited mesh size
- SLC
  - Limited information

### New format needed

- Tailor to AM community needs
  - No content constraints
- Retain Community Control
  - Not Proprietary
- Neutral
  - Avoids association with existing companies

## Caratteristiche desiderate per un Formato di Interscambio

- simple
- ISO 9000-ish features like product tracking
- Interoperability within different manufacturers
- Compatible with FEA applications
- Identification of parent CAD program
- Restricted number of printings
- Support multiple shells
- Editable ASCII/Text format

## Caratteristiche desiderate per un Formato di Interscambio

- Information about build orientation
- Stability/robustness
- No redundancy
- Volume validity
- Lock or encrypt the file with a password
- Ability to put a permanent 'watermark'
- Supporting geometry in native way
- Keep triangle mesh / No triangle mesh

## Reaching consensus, adoption

- Non proprietary / open source
- Endorsement by major CAD / Manufacturers
- Use ASTM / Voting
- Backwards compatible (STL)
- Expandable, XML
- Publish for comments / discussion
- Open source software
- Conversion tools
- Limit the scope: Not a CAD model



## Current STL

| Advantages                                                  | Disadvantages                                    |
|-------------------------------------------------------------|--------------------------------------------------|
| Simple                                                      | Geometry leaks                                   |
| Sequential memory access*                                   | No specified units                               |
| Portable                                                    | Unnecessary redundancy                           |
|                                                             | Incompatible with color, multiple materials, etc |
|                                                             | Poor scalability                                 |
| *Does not require large amounts of<br>RAM, critical in '80s | Lacks auxiliary information                      |

# The new proposed format

- AMF
  - Additive Manufacturing Format
  - Additive Manufacturing File

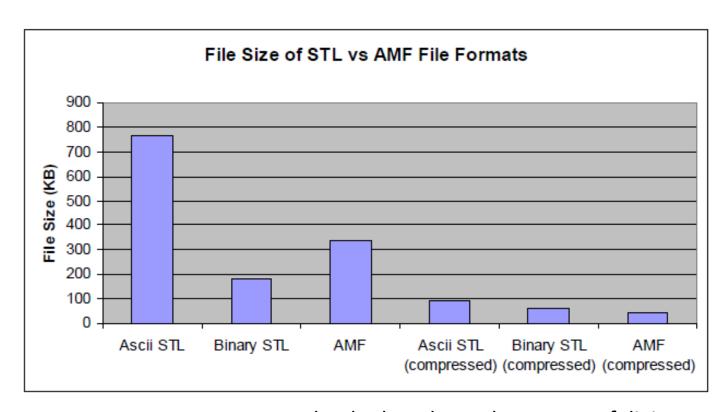
### **XML**

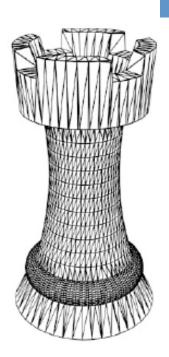
- Meta-format: Format of formats
  - Text based
  - Easy to read/write/parse
  - Existing editing tools
  - Extensible
  - Highly compressible
- Mentioned by a number of constituents
  - E.g. Materialise
  - Based on work by J. Hiller (Cornell)

## **General Concept**

- Part (objects) defined by regions and materials
  - Regions defined by triangular mesh
  - Materials defined by properties/names
- Mesh properties can be specified
  - Color
  - Tolerance
  - Texture
- Materials can be combined
  - Graded materials
  - Microstructure




### **Basic Structure**


```
<?xml version="1.0"?>
«AMF»
  <Object PrintID = "0" units = "mm">
    <Mesh>
      «Vertices»
        <Vertex VertexID="0">
          «VertexLocation x="0" y="1.332" z="3.715"/»
        </Vertex>
        <Vertex VertexID="1">
          <VertexLocation x="0" y="1.269" z="3.715"/>
        </Vertex>
      </Vertices>
      <Region FillMaterialID = "0">
        <Triangle V1 = "0" V2 = "1" V3 = "3"/>
        <Triangle V1 = "0" V2 = "1" V3 = "4"/>
      </Region>
    </Mesh>
  </Object>
</AMF>
```

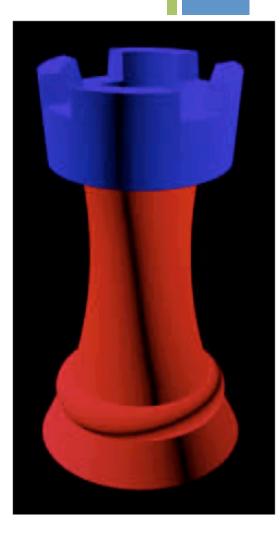




# Compressibility






Need to look at dependency on # of digits

Addresses needs: Small / Compressible

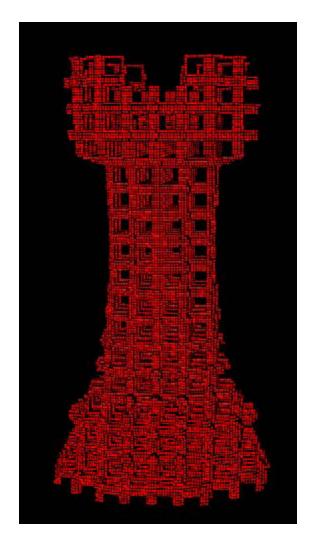


# Multiple Materials

```
<?xml version="1.0"?>
<AMF>
  <Palette>
    <Material MaterialID = "0">
      <Name>StiffMaterial</Name>
    </Material>
   <Material MaterialID = "1">
      <Name>FlexibleMaterial</Name>
    </Material>
 </Palette>
  <Object PrintID = "0" units = "mm">
    <Megh>
      <Vertices>
      </Vertices>
      < Region FillMaterialID = "0">
      </Region>
      <Region FillMaterialID = "1">
        <Triangle V1 = "5" V2 = "6" V3 = "7"/>
        <Triangle V1 = "5" V2 = "7" V3 = "9"/>
      </Region>
   </Mesh>
  </Object>
</AMF>
```




Addresses needs: Multiple Materials, No leaks between regions (shared vertices)




### **Graded Materials**

```
<?xml version="1.0"?>
<AMF>
 <Palette>
   <Material MaterialID = "0">
     <Name>StiffMaterial</Name>
   </Material>
   <Material MaterialID = "1">
     <Name>FlexibleMaterial</Name>
   </Material>
   <Material MaterialID = "2">
     <Name>GradientMaterial
     <Equation UseMaterialID = "0">0.30*X</Equation>
     <Equation UseMaterialID = "1">0.30*(1-X)</Equation>
   </Material>
 </Palette>
 <Object PrintID = "0" units = "mm">
 </Object>
</AMF>
```



## Microstructure



Addresses needs: Periodic meso/microstructure



## Material properties

- By manufacturer's name
  - <Name> ABS </Name>
  - <Name>Tango Black </Name>
  - <Name>Nylon 1234 </Name>
- By physical property
  - </Property Type="Elastic Modulus"
    Value="4E9">
  - </Property Type="Poisson Ratio" Value="1.2">
- External reference (URL)



## **Color and Graphics**

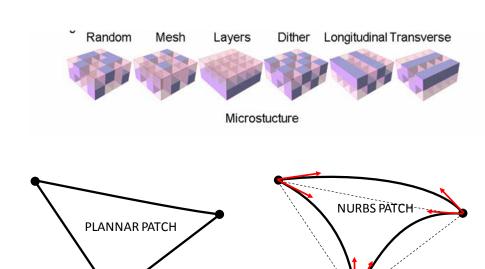
- By volumetric region
  - Solid color
- By vertex
  - Specify Vertex color
  - Specify Vertex coordinate in a bitmap

## Color and Graphics

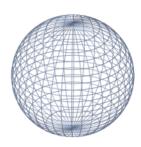
```
<?xml version="1.0"?>
<AMF>
  <Object PrintID = "0" units = "mm">
    <Mesh>
      <ColorFile MapID="0">
        <File>Logo.bmp</File>
      </ColorFile>
      <Vertices>
        <Vertex VertexID="0">
          <VertexLocation x="0" y="1.332" z="3.715"/>
          <VertexMap UseMapID="0" MapXPixel="65" MapYPixel="87"/>
        </Vertex>
        <Vertex VertexID="1">
          <VertexLocation x="0" y="1.269" z="3.715"/>
          <VertexMap UseMapID="0" MapXPixel="64" MapYPixel="87"/>
        </Vertex>
        <Vertex VertexID="2">
          <VertexLocation x="0" y="1.310" z="3.587"/>
          <VertexMap UseMapID="0" MapXPixel="32" MapYPixel="10"/>
        </Vertex>
      </Vertices>
      <Region FillMaterialID = "0">
        <Color R = "0" G = "0" B = "0.5"/>
        <Triangle V1 = "0" V2 = "1" V3 = "2"/>
        <Triangle V1 = "0" V2 = "1" V3 = "4"/>
      </Region>
    </Mesh>
  </Object>
</AMF>
```





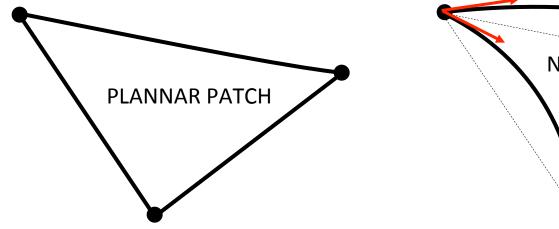

### **Tolerances**

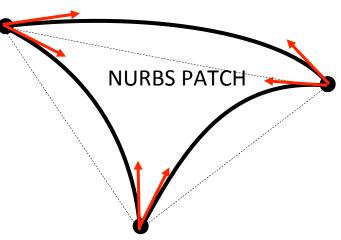
- By volumetric region
  - Nominal tolerance
  - Allowed variation from original volume
- By vertex
  - Specify point tolerance (?)
  - Point to point




# Non-meshed geometry?

- Other representations are not mutually exclusive
- Voxel maps
  - For digital/inkjet microstructure
- NURBS
  - Add slope vectors to some triangle mesh edges
  - Other STEP types?
- Functional Representations
  - implicit equations





```
<?xml version="1.0"?>
<AMF>
  <Object PrintID = "0" units = "mm">
        <Frep MaterialID = "0">
            <GeometryEquation>
            <![CDATA[X^2+Y^2+Z^2-4 <= 0 & Z >= 0]]>
            </GeometryEquation>
            </GeometryEquation>
            </GeometryEquation>
            </GeometryEquation>
            </AMF>
```



## Nurbs patch

- Optionally add slope vectors to some triangle mesh edges to allow for very accurate geometry.
  - Perfect sphere can be made with ~20 patches






## **Print Constellation**

- Print orientation
- Duplicated objects
- Sets of different objects
- Efficient nesting
- Hierarchical





### Metadata

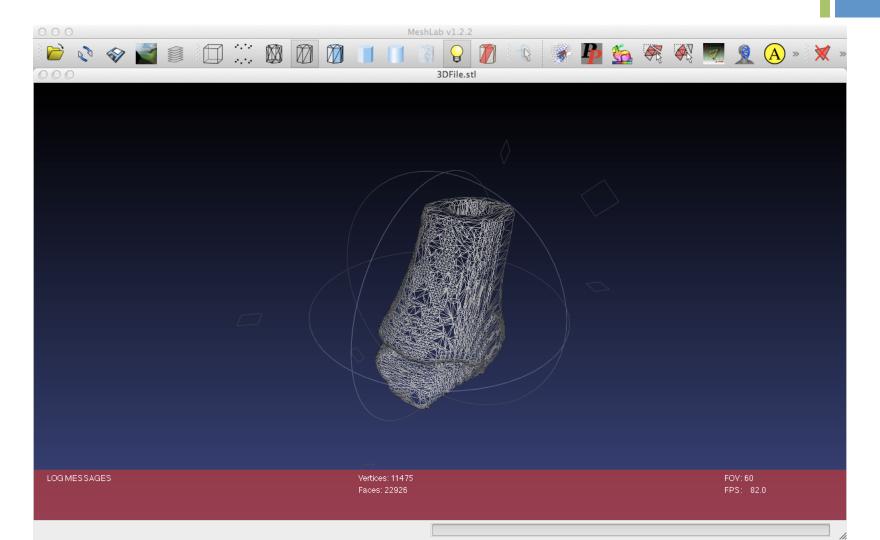
## Encryption

Key garbles vertex coordinates (e.g. using XOR); need key to un-garble

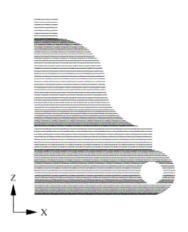


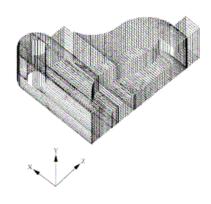
# Watermark / Copyright

### Other features


- URL can be used in lieu of material data to allow for external libraries
- Validation checksums
  - E.g. Original vs. actual part/region volumes
- Automatic error checking
  - Readers/writers must check for intact topology, e.g.
    - All nodes referenced by at least 3 triangles
    - All edges referenced exactly twice per region




## MeshLab




http://meshlab.sourceforge.net

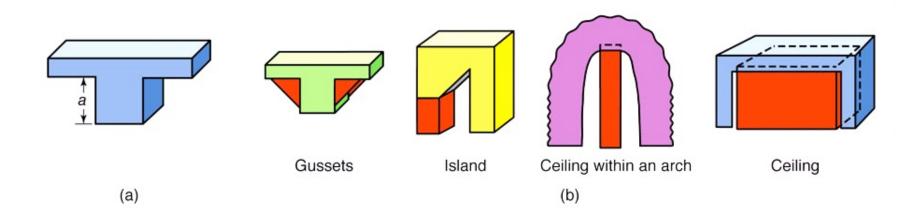


## DA CAD A CAM





# Processing of \*.stl Files


- After the CAD system has generated \*.stl file, it can be passed to the SLA machine (or any SFM machine)
- Machine then processes the \*.stl file, slicing it into many thin layers stacked on one another. The resulting files are called slice files.
- The shapes of the slices represent cross sections
- In SLA (and in many SFM processes) thick solid sections of material are often removed and replaced with cross hatching
- Thus SLA (& many SFM) parts are usually hollow, with cross hatching on the inside to add strength/ stability

## Support material

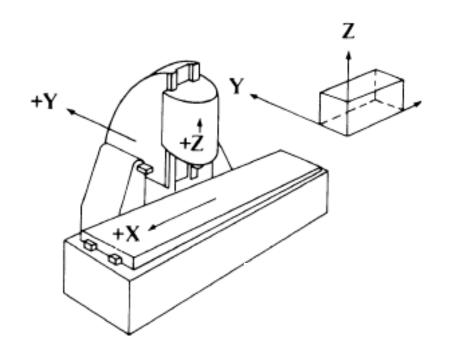
- Some solid freeform fabrication techniques use two materials in the course of constructing parts.
- The first material is the part material and the second is the support material (to support overhanging features during construction).
- The support material is later removed by heat or dissolved away with a solvent or water.



## Support Materials and Structures



(a) A part with a protruding section which requires support material. (b) Common support structures used in rapid-prototyping machines. *Source:* P. F. Jacobs, *Rapid Prototyping & Manufacturing: Fundamentals of Stereolithography.* Society of Manufacturing Engineers, 1992.




# Metodi di patterning

- Vector
- Raster
- Projection

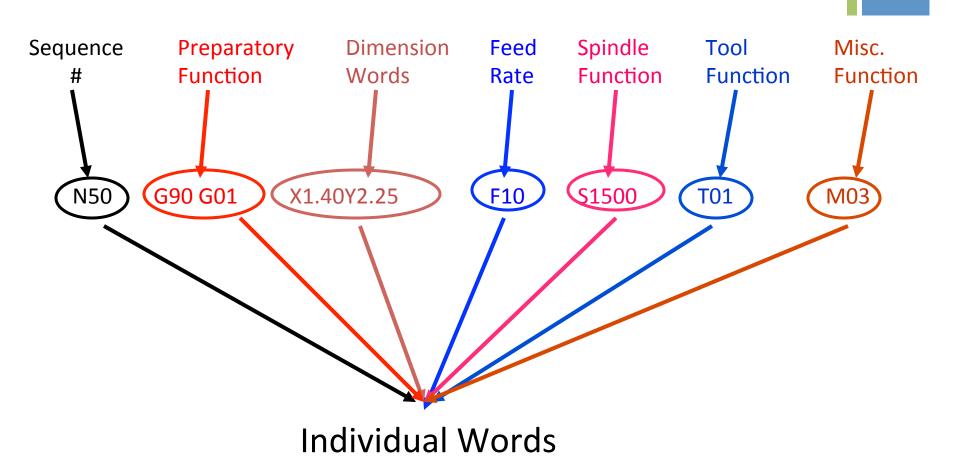
### **Basic Machine Axes: 3 axis**

- Cartesian Robot: 3 axis
  - X axis (table left and right)
  - Y axis (table in and out)
  - Z axis (usually the extruder axis)



### **G-CODE**

- G Code Programming
- Originally called the "Word Address" programming format.
- Processed one line at a time sequentially.


### Word address format

- Word address was developed as a tape programming format.
  - Another name for "word address" is "variable block" format, so named because the program lines (blocks) may vary in length according to the information contained in them.
  - Earlier tape formats required an entry for all possible machine registers. In these earlier formats, a zero was programmed as a null input if the register values were to be unaffected, but in work address, the blocks need only contain necessary information. Although developed as a tape format, word address is used as the format for manual data input on many CNC machines.

#### Addresses

- The block format for word address is as follows:
- N ... G ... X ... Y ... Z ... I ... J ... K ... F ... H ... H ... S ... T ... M ...
- Only the information needed on a line need be given. Each of the letters is called an address (or word)

### **Common Format of a Block**





### Word address

- Reserved Code Words Worksheet
  - N Sequence or line number
  - G Preparatory function

**—** ...

- Dimension Words:
  - -X
  - **-** Y
  - -Z

## Word Address 1/3

- N Sequence or line number
  - A tag that identifies the beginning of a block of code.
     N numbers are ignored by the controller during the program execution. It is used by operators to locate specific lines of a program when entering data or verifying the program operation.
- G Preparatory function
  - G words specify the mode in which the milling machine is to move along its programmed axes.
     Preparatory functions are called prep functions or, more commonly G codes

# Word Address 2/3

- Dimension Words
  - X Distance or position in X direction
  - Y Distance or position in Y direction
  - Z Distance or position in Z direction

- M Miscellaneous functions
  - M words specify CNC machine functions not related to dimensions or axial movements.

## Word Address 3/3

- F Feed rate (inches per minute or millimeters per minute)
  - Rate at which cutting tool moves along an axis.
- S Spindle speed (rpm revolutions per minute)
  - Controls spindle rotation speed.
- T Tool number
  - Specifies tool to be selected.

### G Word

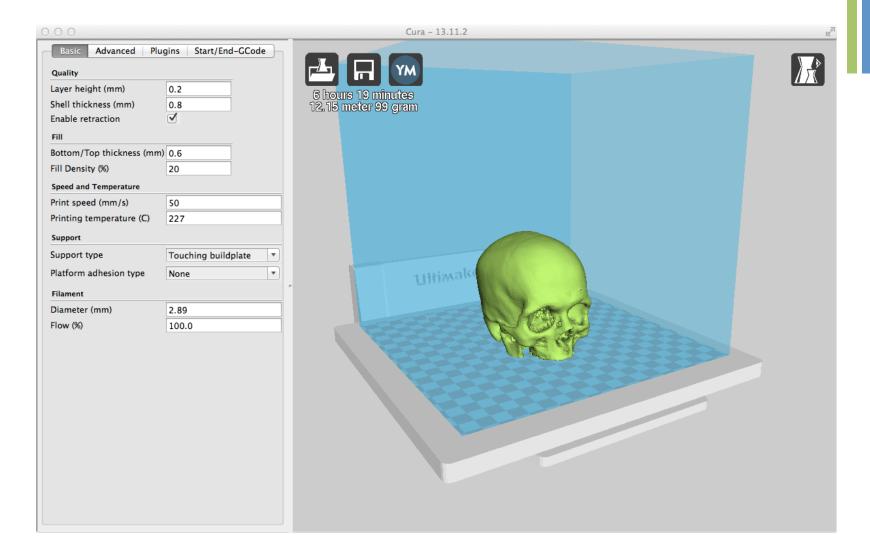
 G words or codes tell the machine to perform certain functions. Most G words are modal which means they remain in effect until replaced by another modal G code.

### Common G Codes

- G00 Rapid positioning mode
  - Tool is moved along the shortest route to programmed X,Y,Z position. Usually NOT used for cutting.
- G01 Linear Interpolation mode
  - Tool is moved along a straight-line path at programmed rate of speed.
- G02 Circular motion clockwise (cw)
- G03 Circular motion counter clockwise (ccw)

### M Word

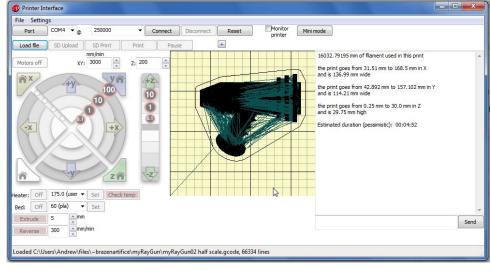
 M words tell the machine to perform certain machine related functions, such as: turn spindle on/off, coolant on/off, or stop/end program.




## Esempio G-Code

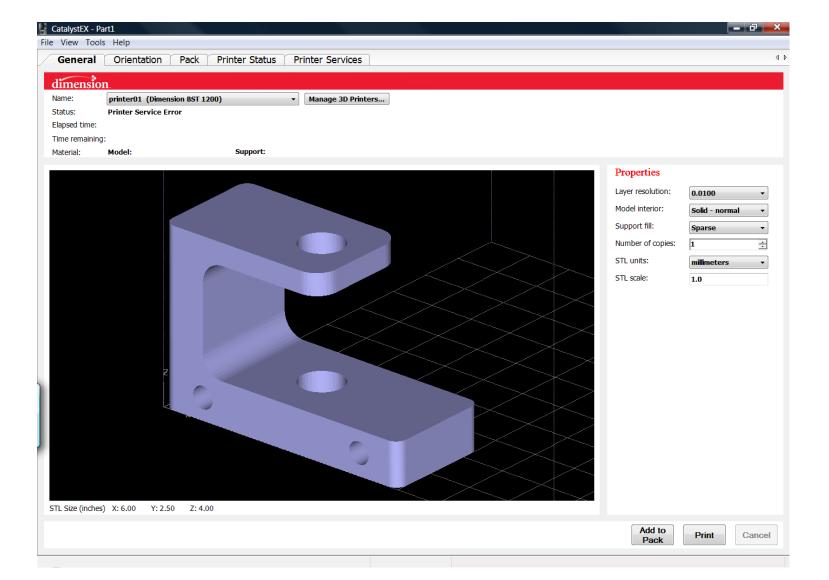
```
;Generated with Cura_SteamEngine 13.11.2
M109 T0 S227.000000
T0
;Sliced ?filename? at: Tue 26-11-2013 17:33:05
;Basic settings: Layer height: 0.2 Walls: 0.8 Fill: 20
;Print time: #P_TIME#
;Filament used: #F AMNT#m #F WGHT#g
;Filament cost: #F_COST#
G21
        ;metric values
G90
        ;absolute positioning
        ;start with the fan off
M107
G28 X0 Y0 ;move X/Y to min endstops
G28 Z0 ;move Z to min endstops
G1 Z15.0 F?max_z_speed? ;move the platform down 15mm
G92 E0
               ;zero the extruded length
                 ;extrude 3mm of feed stock
G1 F200 E3
G92 E0
                ;zero the extruded length again
G1 F9000
M117 Printing...
;Layer count: 179
;LAYER:0
M107
G0 F3600 X87.90 Y78.23 Z0.30
;TYPE:SKIRT
G1 F2400 E0.00000
G1 F1200 X88.75 Y77.39 E0.02183
G1 X89.28 Y77.04 E0.03342
G1 X90.12 Y76.69 E0.05004
G1 X90.43 Y76.63 E0.05591
G1 X91.06 Y76.37 E0.06834
```




## Cura

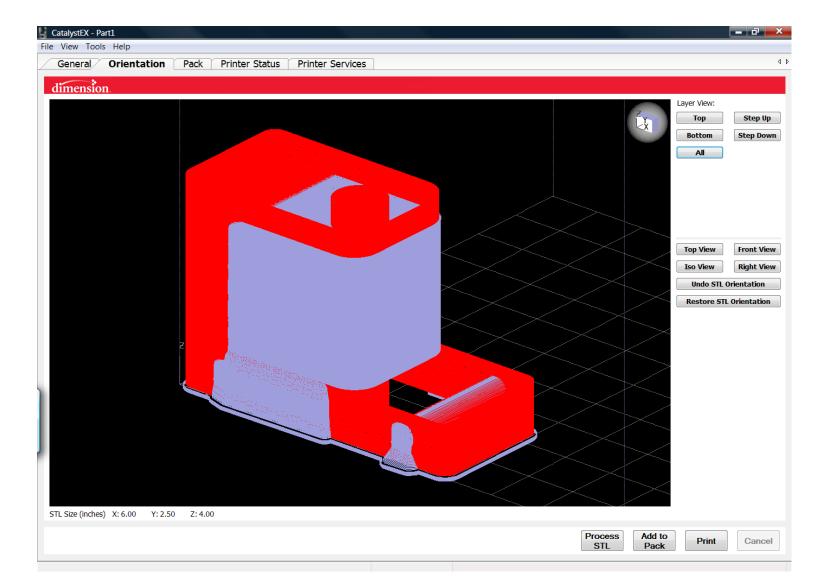





### Slic3r








# **Stratasys Catalyst**





# **Stratasys Catalyst**

