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Manipulability of Cooperating Robots with
Unactuated Joints and Closed-Chain Mechanisms

Antonio Bicchi and Domenico Prattichizzember, IEEE

Abstract—in this paper, we study the differential kinematics force ellipsoid

and the kineto-static manipulability indices of multiple coop-

erating robot arms, including active and passive joints. The

kinematic manipulability indices are derived extending previous

results on cooperating robots without passive joints. The force

manipulability analysis for cooperative robot systems cannot

be straightforwardly derived by “duality” arguments as it can

with conventional arms, rather a distinction between active

and passive force manipulability must be introduced. Results in Q
this paper apply directly to the analysis of cooperating robots,

parallel robots, dextrous robotic hands and legged vehicles, and,
in general, to closed kinematic chains.
Index Terms—Closed-chain mechanisms, cooperating robots, g

dextrous manipulation, kinematic and force manipulability,
parallel robots.

velocity ellipsoid

Fig. 1. Velocity and force ellipsoids in the task space of a serial-chain, fully
actuated robot arm. By classical duality arguments, the principal directions are
|. INTRODUCTION the same, while the lengths of axes are inversely proportional.

INCE their original proposition [13], [17], manipulability

indices have been widely used in robotics analysis, tagkd Wilfinger [15] (see also [16]) extended the concept of kine-
specification, and mechanism design. As is well known, theatic manipulability to general constrained rigid multibody sys-
basic idea of manipulability analysis consists of describing diems including closed kinematic chains. Park and Kim [11] (see
rections in the task or joint space that extremize the ratio baso [12]) studied manipulability of closed chains, including un-
tween some measure of effort in joint space and a measauated joints, using an elegant differential geometric formula-
of performance in task space. Whenever these measurestiae The authors [4] (see also [3]) discussed the problem in-
quadratic functions of the joint and task variables, respectiveifuding effects of redundancy and indeterminacy of kinematics,
and there is a linear relationship between the two sets of vaaind introduced the notion of active and passive force manipula-
ables, then manipulability analysis amounts to the analysis of hility.
eigenvalue-eigenvector problem. A typical result of such anal-With respect to existing literature on the subject, the main
ysis is reported in Fig. 1, where the familiar ellipsoid represerentribution of this paper is threefold. Firstly, we explicitly de-
tation in task space is used for velocity and force related perfaeribe a systematic procedure for building the kinematic model
mance/effort ratios. The extension of manipulability analysis taf a system of cooperating robots with passive joints, which can
multiple cooperating robots has been studied by several authibesused to attack a wide generality of mechanisms (such con-
so far. Lee [8] and Chiacchiet al. [5] proposed extensions for struction is only illustrated by particular examples in [15] and
the case when all cooperating arms have full mobility in theji1]). Secondly, by providing physical interpretations of manip-
task space. Bicchét al. [1] extended the kinematic manipula-ulability results from different viewpoints (e.g., Yoshikawa's ef-
bility ellipsoid problem to general cooperating arms, with arbficiency and Salisbury/Craig’s accuracy viewpoints), we treat
trary number of joints per arm. Melchiorri [10] applied similarotherwise ill-posed kinematic redundancy and indeterminacy
tools to address force manipulability in fully actuated mecharoblems as optimization (or worst-case) problems. Finally, we
nisms. The three papers[15], [11], [4] presented at the same cpropose a detailed study of manipulability in the force domain
ference session discussed different aspects of this problem. Vlad show that a distinction betweactiveandpassivdorce ma-

nipulability must be introduced to obtain a full understanding of
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(or grasp matrix) b&7". A suitable permutation matri® can

be found that reorders joint variabl@é$o have actuated joints on
top, and unactuated joints at bottoiff, = [q1  ¢] = 6T PT,
whereq, (respectivelyq,,) is theg, (¢,)-vector of actuated (un-
actuated) joint velocities. Correspondingly, the Jacobian matrix
is partitioned as

a) I ID—-1. _ | 7 3 éla
Jo=JpPlq= [Ja Jp} [qp} .
= i - . . .
The mobility of the system is then studied by analyzing the con-
straint equation
da
Jo I -G']]4,| =0 (1)
u
c) d)

whereJ, = HJ,, J, = HJ, andG” = HGT. All pos-
Fig. 2. The four-bar linkage (a) with unactuated joints (in white) adjacent t%'ble motions Pf the SYStem belong to the nullspace (or kernel)
the reference member can be considered as a manipulation system and (b) @ftthe constraint matrixJ, J, — G7]and, hence, can be

two one-joint fingers, one object (in black), and two soft-finger contacts. Morgwritten as linear combinations of vectors forming a basis of
generally, the four-bar linkage (c) can be represented as a manipulation system

with two two-joint fingers, one object (in black), and two complete-constraif€ Nullspace. B_y suitable linear algebra_ operations (s_e_e, €.g.,
contacts. [1]), such a basis can always be written in a block-partitioned

form
illustrating applications of our results with two examples (Sec- .
tion V), where the proposed techniques are used to actually per- — a,r ‘
form optimized design of closed-chain manipulators. b I A R I

i B S R
u po,c @ X3

Il. PROBLEM FORMULATION In (2), L'y, is a basis matrix ofker(J,) and incorporates

The approach we follow to analyze kinematics and statics ¢ fedundancy of the atuated part of the mechanism: all
closed-chain mechanical system is to consider them as embd@@issible rigid-body motions of the actuated joints when both
ments of a cooperative manipulation paradigm, where multigee reference member and the passive joints are locked can be
robotic limbs (or fingers) interact with ambjectat a number written as linear combinations of columnskbf ... Conversely,
of contacts The object is the reference member of the mechBs = ker[J,, —G™] in (2) represents all possible motions
nism, whose motions and forces are the ultimate goal of anglf-the system, when actuated joints are locked. We will refer
ysis. Contacts represent in fact unactuated kinematic pairst@fthe column space of; as thekinematic_ndeterminacy
different nature between the object and the contacting link, tHatbspace of the mechanisms at the given configuratidhe
restrict some or all the components of the relative velocities 8¢cond block column of the matrix in (2) characterizes the
the two bodies. coordinate motions of the system. Vectdrs, .x» represent

In [1], a notation for describing such systems was establishét unique possible motion of theagsive joints and of the
which is recalled in Appendix A. In that paper, each limb is a@bject, ®ordinated with motion¥',, .x, of actuated joint.
lowed an arbitrary number of joints. Contacts with the object A finer partition of block matrices in (2) provides a more de-
are allowed at any link of the various limbs. Fig. 2(a) show&iled analysis of mobility of systems under investigation. By
how a four-bar linkage with the two middle joints not actuate¢Ome algebraic manipulation, the indeterminate motion term
and Fig. 2(b) shows how it can be thought of as a system &N be rewritten as
two cooperating fingers and an object, with two contacts of bi-

X31
lateral soft-finger typé.For more general cases, where the un- Tx3 = Lpr Ipoyi 0 X9 | . ©)
actuated joints are not all adjacent to one element of the chain, 0 Topi Lol |,

e.g., Fig. 2(c), or when that element is not the member whose . _ o
motions should be studied, methods of [1] have to be extendd@re.I',, » = ker(J,) incorporates all motions ofgssive joints
as described in the rest of this paper. which are free @dundant) when both active joints and reference
Consider a system of cooperating robotic limbs, compriségember (object) locked (as, e.g., in a Stewart platform whose
of ¢, actuated joints, ang, unactuated (passive) simple kineJ_e_gS can rotate freely about the spherical joints at their extrem-
matic joints, which interact with an object atcontact points ities). On the other hand;, ; = ker(G') represents motions
accordlng to co_ntact models as SpeCIfled by a_selectlo_n matméAs a variable naming convention, we use subscripts with the initial letter
H (see Appendix A). Let the aggregated Jacobian matrix of tBethe relevant keyword. The letter is underlined at the first occurrence of the

cooperating devices be denotddand let the object Jacobiankeyword.
3The terminstability is used in [16]. We prefer to avoid reference to stability
1soft-finger contacts prevent all relative linear velocities, and allow relativeoncepts in this quasi-static setting. Furthermore, the dual case in the force do-
angular velocities in the plane of contact, see Appendix A. main is customarily defined agatic indeterminacy
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of the dject that arerideterminate, i.e., not constrained (up t¢including the case of nonhomogeneous units for linear or an-
first order), when all joints, active and passive, are locked. Tigeilar velocities). Observe that this choice of weights effectively
passive joint motions that lie in the image (or column spac@mounts to defining a metric on the tangent space to the task
of I',, ; correspond one-to-one tdj@ct motions in the image and joint manifolds [12]. In practice, the choice¥f, is made

of I',,, ; when active joints are locked (hence are kinematicallyased on how much it “costs” to run a certain actuator at unit
indeterminate). Kinematic indeterminacy with nonvoid blockegelocity. The choice oW, is usually made based on the task
Iy i, 'y andl’, ; imply that the velocity of the task frame specifications (see, e.g., [18] and Section V).

fixed to the object is not uniquely determined when active joints It should also be pointed out that a different interpretation of
velocities are, hence typically represent an undesirable congtianipulability indices is possible, in the original spirit of the

tion which may be obtained at singular configurations. work of Salisbury and Craig [13], as one can consider differen-
The second block column in (2) can also be rewritten as tial motions instead of velocities, and regard
ra . ra,p, e ra,po, e ra,o, e X21 e = 6uTWu6u (7)
|: ’ :| Xo = I‘pa,c I‘poa,c 0 X929 (4) 6qTWq6q
op, ¢

0 Topae Toged L¥2 as the ratio between a norm of errors in positioning the end-ef-

showing: @ordinate motions of thectuated and assive joints fectoréu, and a norm of erroréq in controlling the joints to
while the object is locked (first block column)poerdinate their set-points (the latter errors being regarded as causes of
motions of @tuated joints and lject with locked unactuated the former, and both being considered small enough to be ap-
joints (third block column); and motions that are only possibleroximated with their differential). The analytic formulation of
by coordinated simultaneous movement dfject, ative and the Yoshikawa’s problem and the Salisbury—Craig problem are
passive joints (second block column). quite similar, although different interpretations of results are in
Summarizing results of (2)—(4), a kinematic description dirder (typically, what is a “good" direction for one problem is
all possible motions of a general closed-chain mechanism c&d” for the other).
be given in (5), shown at the bottom of the page, where As we are interested in performance in the space of velocities
T x Ty s x T x] T of the reference membe, anpl _efforts (qr errors) in the space
The method of analysis based on the cooperative robots pafractuated (and measured) joints, the index (6) is rewritten as
adigm as described in this section can be applied to general alW.
closed kinematic chains. For example, to the four-bar linkage R = Tvviu
of Fig. 2(c), where the only actuated joint is in the middle of e Wala
the chain. An equivalent manipulation system is depicted the analysis of which directions in the task space (and corre-
Fig. 2(d), for the case when the reference member of interepibnding directions in the actuated joint space) maximize or
in the linkage is its middle link. The system is now regarded asinimize R, is easily solved once a correspondence between
being comprised of two limbs with two joints, three of which aréhe numerator and denominator variables, nansefndq,, in
unactuated (in white), and an object (in black) grasped by tW8) is established. Note that in order for ratio (6) to be well-de-
completely constraining contacts. Other examples of applidired, a one-to-one mapping should be established between the
tion to a five-bar linkage and to a Stewart platform are reportédo variables. To find such mapping, rewrite (5) as
in Section V.

(8)

(:'1(1, = ra,, rX1 + ra,p, cXo1 + ra,po, Xo2 + ra,o, cX23
=I.x.+I, %
u = Fopa, X2 + roa, eXo3 + rop, iX32 + ro,ix33

©)

I1l. KINEMATIC MANIPULABILITY

A kinematic manipulability index, in the sense of Yoshikawa =TI, x.+Lux;
[17], can be defined in terms of the ratio of a measure of per-
o . - Where
formance in the task space and a measure of effort in the joint
space. Taking these measures to be suitably defined two-norms & [To. Tap. ] r,. def [Capo. cLao. o]
of velocities, an index can be written as dof 7 Cdet 7 7
I‘o,c = [I‘opa, croa, c] r';; = [I‘op,iI‘o,i] (10)
u'W,u . . .
By = m (6) and vector,., x;, andx, parameterize unconstrained motions
q

of active joints when the reference member is locked, object
where W,,, W, are positive definite matrices whose role isnotions when active joints are locked, and coordinate motions
to weight different components of velocities in the two spaced active joints and object, respectively.

q ra, T ‘ ra,p, c ra,po, c ra,o, c ‘ 0 0 0
él.p - 0 I‘PU«, c I‘poa, c 0 I‘P: r I‘PO: i 0 * (5)
u 0 0 I‘opa, c Foa, c 0 I‘op,i I‘o, @
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From (9), it appears that a one-to-one relationship betwersrdundancy andiorst-casew.r.t. indeterminacy, is thus defined
task and actuated joints velocities does not exist in general, as-

cause of the possible presence of redundancy (mBtrj>and miny, 07 W,

indeterminacy (matriX';;). This problem can be circumvented R =

if the physical interpretation of manipulability ratios is taken minx, g Woda

into account. X TLPE wyWuP e, w)TocXe 13
Consider first the case that there is redundancy, but no inde- N xITLPHL w WP, w,Teex - (13

terminacy [';; = 0). From Yoshikawa’'s viewpoint, it is rea-
sonable to assume that if more than one actuated joint velocity
can be chosen corresponding to some task velocity, then the one IV. FORCEMANIPULABILITY

with minimum cost will be preferred in the controller policy The force manipulability index is similarly defined as the

(differentredundancy resolution schemes can be accommodaigg}, of a performance measure in the space of forces exchanged

for by suitable choices of the cost weight, ). We might then yith the environment, and an effort measure in the space of ac-
redefine aroptimizedefficiency ratio (8) for redundant systemsyated joint torques
as
wIW, w
uTWuu Raf = (14)

RO = (11) TaWeTo

Ininxr él(q;wqéla ' . . . . . .
Here, weights ir'W . incorporate different costs in generating
From the Salisbury—Craig’s viewpoint, redundancy of actuatidarque or forces at joints, and takes care of mismatches of
should conservatively be taken into account as if playing agaifigeasurement units between rotational and prismatic joints.
the mechanism accuracy, hence by consideringmtist-case Weights inW,, adjust for different units of components of the
controller erroq which, among those compatible with a giversix-dimensional wrenchw, and may represent task specifica-
du, minimizes the denominator. Thus, the same mathematig@ns (such as greater leverage in some direction). A physically
problem of (11) is obtained, with a very different physical inmotivated choice could be takigy ,, as the stiffness matrix of
terpretation. The constrained minimization problem appearitige environment with which the reference member interacts.
in the denominator of (11) can be readily solved by standardFrom application of the virtual work principle, the relation
linear algebraic tools (see, e.g., [14]). Since we will often mebetween wrenches on the reference membend the vector
in the sequel similar problems, we introduce a specific notf-0f contact forces at equilibrium i&r = Gf, while actuated

tion for the projector matrix P ¢ def 1 _ AAg [where joint torquesr,, are related to contact forces ag = —JIf.

4 def a7 LIAT o . Furthermore, the fact that no torque is applied at passive joints
AQ = (ATQA)T"ATQ denotes theQ weghted psgudom is expressed aéff = 0. These relations can be rewritten in
verse of A], such that the quadratic form* Qx subject to

. : : - . matrix form as
the linear constraink = Ay + b has its global minimum in
% = P(a ob. We have therefore that the minimum of the de- I 0 -G||w
TAQ i T
nominator of (11) is 0 I J.||7]|=0. (15)
o0 JI f
min AW q=x T . Plr_ WP, w)TgeXe Remark: For a static equilibrium to be possible with unre-
" stricted active joint torques, it is necessary and sufficient that
Hence, the kinematic manipulability analysis in the presence\wfenches applied on the reference member satisfy
passive joints and redundancy is reduced to studying the ratio

W € range (G ker (J};)) . (16)
Rotred _ X T W, T ex, (12) The possibility for the mechanism to balance an arbitrary
ak xZI";fCP(TFT Wq)WqP(r”WG)I‘qcxc wrenchw is naturally related to the kinematic indeterminacy

of the system. In fact, condition (16) for adt implies

at varyingx., i.e., a generalized eigenvalue problem [6]. -

The case that the system is kinematically indeterminate ker(G ) =0 17)
(T;; # 0) is of practical interest at the singularities of range (G”) Nrange (J,) =0 (18)
the mechanism. Because of the existence of nonzero task o
frame twists corresponding to zero active joint velocitie®nd this in turn implies that blockE,, i, I'op, i, andT’, ; are
the efficiency index in (11) results unbounded. From th¥id in (3). Redundancy in passive joints [corresponding to a
Salisbury—Craig viewpoint, this means that near-singul@Pnvoid blockl’;, ,.in (3)] does not influence the possibility of
configurations are very inaccurate. In Yoshikawa's perspe@lancing arbitrary external wrenches.
tive, however, where (11) represents a performance, only 4n the grasping Iiteraturg, contact forces in the nullspace of
worst-case approach would make sense, whereby the |&&sare usually referred to asternal (or homogeneoydorces,
feasible object velocity is assumed to occur for a given activéich physically represent forces that do not affect the balance

joint Ve|0C_|tY- A ma_mpU'ab'“ty ratio for k|r?em_a.t|c_ally redun- 4 this case, the numerator of (14) would represent twice the elastic energy
dant and indeterminate mechanisms, whiclpsmizedw.r.t. of interaction.
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It is then natural to introduce two distinct force manipulability

) 1 | ) = { ) indices.
\

A. Active Force Manipulability

For a given set of equilibrium torques at the actuated joints,
i.e., for givenx, andx;, in (19), the corresponding wrench is
not uniquely defined if a nullspace df' = [J, J,]? exists.
However, in the worst case (when wrenchesre considered
to play against maximization of the index), efficiency will be

a) b :
) given by
Fig. 3. A cooperating system may actively exert a wrench (a) and passively . T
resist an external wrench (b) with best efficiency in different directions. w miy W W, ,w (20)

af TTW. T,

of the object; we Ww also refer to contact forge_s that lie botRyote that ifw,, takes into account the environmental stiffness,
in the nullspace o, and in the nullspace of, (i.e., forces  minimization of the numerator amounts to assuming that the
at the contact points that do not affect the balance of the limgghchanism apply, for the given joint torques, the wrench that
as tostructuralforces. A mechanism is callestatically indert-  minimizes the energy of elastic deformation. By using suitable

erminateif ker(G) Nker(J7) # 0. If (and only if) the system prgiector matrices, one readily gets
is not statically indeterminate, all equilibrium combinations of

extemal wrenches ar_1d acti_ve_ joint torques so_lving (1_5) can beyin wIw,w = XaTIﬁP(TrS, woyWoPr, w.)LwXa.
obtained by an algorithm similar to that used in Section Il and *s

described in [1], in the form Therefore, the worst-case active force manipulability analysis is

reduced to studying the ratio

w o 1, T, Xp .
7, |=|T), I, o0 X, | . (19) X, I‘ﬁP{mWw)WwP(FSWw)I‘w ‘ 07 [x,
f I‘fh Ff I‘fs Xs w X 0 | 0l | Xn
. - » of TrrIw. T 0
Notice that a similar decomposition of forces was used by |:Xa:| [ wels ‘ ‘ } [xa}
[10], although passive joints and statically indeterminate Xn 0 | TLW.Tp ] L[%n

systems were not considered. Here, contact forces suchthas,{_ . lized ei | bl The di .
T}, [which belong toker(G) N ker(J7)] represent active at is again a generalized eigenvalue problem. The discussion

internal (or lomogeneoysforces that do not affect the balanceOf the ellipsoid is similar to the one given above for kinematic

of the object, nor the passive joints; such internal forces a%anlpulablllty. N_ote that the numerator quadratic form has a
counterbalanced by torques at the active joibtsx;,. On number of zero eigenvalues equal to the components afor-

the other hand, contact forces suchIagx, [belonging to responding to joint torques balanced by purely internal contact

ker(J1) N ker(J1)] represent suctural contact forces that arefqrces, with no net effect on the object balan_ce, t_hat.obwougly
? e zero efficiency. If applied to the mechanism in Fig. 3, this

balanced by zero torques at the joints and by wrenches on fiee z€ : i . .

objectI',x,. Finally, the second block column of the matri>ﬁna.IySIS would assign maximum efﬂmency to fo.rces. pushl'ng

in (19) characterizes the actual force transmission frotiva onzo_ntally, ‘f?md Zero efﬁcu?ncy n the _vertlcal d_|rect|on: this

joint torques to object wrenches, and vice versa: wrenchri%';UIt IS _cor_15|stent W'Fh th_e intuitive notion of active force ma-

such asI',,x, represent the unique possible wrench on tH?e!pUIab'"ty lllustrated in Fig. 3(a).

object corresponding to actuated joint torqligs,, and both _ _ .

uniquely correspond to contact forcEsx,. Notice that the B- Passive Force Manipulability

decomposition in (19) can always be made such that blocksFor a given equilibrium wrench acting externally on the refer-

in the same row are mutually orthogonal w.r.t. the intern@nhce member, i.e., for giveq, andx, in (19), the corresponding

product defined on their range space, suchBfaW ,I'; = 0, joint torques are not uniquely defined if a nullspaceGf(in-

I'YwW.I, = 0. ternal contact forces) exists. However, it is reasonable to assume
In dealing with force manipulability analysis for closed kinethat the controller policy will specify that the torque with min-

matic chains, it is necessary to introduce a finer discussioniofum cost be chosen to oppose a given wrench. The optimized

different types of performance indices and costs associated witkssive force efficiency will hence be given by

different tasks. In particular, a distinction betwesetive and

passiveorce manipulability should be introduced. The motiva- o _ wiW,w 1)

tion for such a distinction clearly results by observing the simple 2 min,, 72 Wor,’

examples described in Fig. 3. It appears that the wrenches that ) ) _

a manipulation system is able to apply most efficiently througtSing the projector notation above established, one gets

the object to the environment, may differ from wrenches that

: T _ LI TpT
are most efficiently resisted if external loads act on the object. ™t 7o Wr7a = X I Pip, v yW-Pr, w)l'sXe
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and the optimized passive force manipulability analysis is 2 3
studied by the ratio shown below
4
5] e 2]
0 X, 0 | TTW,TI,] [Xs 5
pr {XG}T{I‘ZPZ}]“W’_)WTP(FIHWT)I‘T | 0} {xa}
Xs 0 | 0] [Xs Fig. 4. A five-bar linkage used as a case study.

where again;, Wy, I'; = 0 is used. Note that the denomi-«hest” configurationg of the hand for a given grasp, which min-
nator quadratic form has a number of zero eigenvalues equajif;es the actuator effort necessary to exert the optimal contact
the components o, corresponding to wrenches balanced bycef;, | through modification oIy, (q). This amounts to max-
structural constraints, with no net effect on the active joints [”%izing Ry1,(%y,) as a function ofy, i.e., aligning the major axis

on the passive, because of the equilibrium condition (15), th§itihe ellipsoid in (23) withk;,.

obviously give infinite efficiency. If applied to the mechanism

in Fig. 3, this analysis would assign maximum (actually infinitelp. Duality

efficiency to forces pushing vertically, and smaller efficiency in |, the treatment of kinematic and force manipulability con-
the horizontal direction, consistently with the intuitive notion ofy,cted so far, the usual duality relationship between kinematic
passive force manipulability illustrated in Fig. 3(b). and force ellipsoids is somewhat concealed. Indeed, for mecha-
nisms such as those considered in this paper, the kinematic and

) . ~_ force domains do have differences in practice. While the exis-
According to (19), the subspace of internal forces coincidgsnce ofker(G) (internal forces) aner(J7') (zero-torque con-

with ker(G) and corresponds to the column space of matrpgct forces) is the norm in practical devices, existence of a redun-
[ j1., while the associated actuated joint torque subspace Cgincy subspadesr(J) is not so frequent, and systems with non-
responds to the column spaceldf. Notice thatl’ j;, does not trivial ker(GT), (contact) indeterminacy, are exceptional. This
depend (for statically determinate mechanisms) on the systg@p|ains why the two domains have been treated differently.
Jacobian, nor as a consequence, on the finger joint posifons  Kineto-static duality forRg® (13) is revealed when con-
An explicit one-to-one mapping between internal forfess sidering, in the force domain, theorst-case(w.r.t. structural

I s, x;, and joint torques ;. et I';,x;, exists such that the in- forces),optimizedw.r.t. internal forces) efficiency index

ternal force manipulability index can be defined as the ratio of a

C. Internal Force Manipulability

performance measure in the spacé&dd, and an effort measure ow _ min,, wlW,w
in the space of4,'s 77 min,, 7TW .7,
T TPl i
th _ ;h Wthfh ) (22) _ Xa I‘wP(FS’ VVw)W'wP(Fs, ww)I‘wxa ' (24)
TahW"'hTah XZWI‘ZP{FM VV,_)W"'P(FIL, {/[/>T)I‘Txa

The study of internal forces manipulability ellipsoids reduces {Q4eed when (13) and (24) are compared assufhg,, =
studying the ratio W, W, itis found that the Rayleigh ratios (13) and (24) have
numerator and denominator exchanged (this can be verified con-

T
= X L Wl pnxn (23) sidering that, because of the principle of virtual work, it holds
xp Ty W, Lx, r’r,=rir, r’r, =rir, =rfr, =rfr,. = o).
which can be straightforwardly addressed along the lines of pre- V. CASE STUDIES

vious cases. ] ]

Itis important to point out that, for mechanisms including unf Five-Bar Linkage
lateral and/or frictional contact constraints (such as is the case irAs a first case study, consider a five-bar closed chain de-
dextrous manipulation) internal forces may have a fundamensatibed as a two-arm cooperating system (see Fig. 4). We want
role in avoiding that contacts are broken or slip. Typically, ito investigate the effects on kinematic and force manipulability
order to fulfill such constraints, components of the internal forasf different design choices about the number and the location of
vectorf;, must belong to some nonlinearly-bounded subset a€tuators at the joints of the chain. In particular, we will com-
theimage of';,. In [2], such subset was shown to be convex, anghre two designs with two actuators placed at joints 1 and 5
an efficient algorithm to find the internal force vectiarmaxi- (see Fig. 5), and at joints 2 and 4 (see Fig. 6), respectively,
mizing a distance from the subset boundaries was provided. Tarel a fully actuated design (see Fig. 7). Comparisons will be
“optimal” vectorf;, depends in general on mati and on the made about the nominal configuration depicted in Fig. 4, for

applied wrenchw, but not on the system JacobidnBecause which contact points coordinates afg = [—(2/3), 0] and
L'y, is full rank andfy, € range(I'ss), there exists a unique c,» = [-(1/3), 0], contact types are modeled as complete con-

X, such thaff;, = I';,%;,. The ratioR ;,(x;) should therefore straints, the object frame origin is gt(1/2), 0], and the coor-
be evaluated at;, = %x;,. The utility of (23) is hence to find the dinates of the centers of the five joints ase = [-1 — 2],
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wrench (in directiorf0, —0.89, 0.45]%) resisted by the mecha-
nism with zero torques: the passive force ellipsoid (21) degen-
erates to a cylinder whose intersection with the plang, w,)

is the PFM ellipse represented in Fig. 5.

The subspace of reachable internal forces is trivial in this case
(', = T'y, = 0), and duality is found between the kinematic
manipulability ellipsoid and the active force ellipsoid.

2) Actuators at Joints 2 and 4In this case, depicted in
Fig. 6, the two generalized eigenvalues of the kinematic ma-
Fig.5. The five-bar linkage with joints 1 and 5 actuated, along with kinematigjipulability ellipsoid evaluate to 1.42 and 0.22. The projection
active force, and passive force manipulability ellipsoids. of the kinematic ellipsoid (KME) onto the plan@u,, uy)
is reported in Fig. 6. In the force domain, the active force
ellipsoid’s eigenvalues are 4.55 and 0.70. The projection of
the active force manipulability ellipsoid (AFME) is reported
in Fig. 6. The passive force ellipsoid degenerates to a cylinder
whose intersection with théw,, w,)-plane is reported in
Fig. 6. The efficiency indexes afé.76, 4.90, ~c]. No internal
forces {'s, = I';, = 0) are present in the mechanism and, as
for the previous case, the kinematic manipulability is dual to
'S the active force ellipsoid.

3) Actuators at All Joints:If all joints are actuated (Fig. 7),

Fig. 6. The five-bar linkage with joints 2 and 4 actuated and the kinematic aHa€ Kinematic manipulability ellipsoid is described by two

\

N
NN

\{&X\\\\\\\\‘\?“\\:\

force manipulability ellipsoids. generalized eigenvalues, 0.59 and 0.11. The projection of the
kinematic ellipsoid (KME) onto the plane:,, w,) is reported
’//%}\owm: in Fig. 7. The active force ellipsoid has eigenvalues 1.38
780 and 4.68. The projection of the active force manipulability

ellipsoid (AFME) is reported in Fig. 7. The passive force
ellipsoid degenerates to a cylinder whose intersection with the
(wz, Wy)-plane is reported in Fig. 7. The efficiency indexes
are[1.75, 8.95, oo]. Differently from previous cases, here, the
mechanism exhibits a three-dimensional subspace of reachable
internal forces(I';, # 0) along with the one-dimensional
subspace of structural forcéF, # 0). Duality is found be-
tween the kinematic manipulability ellipsoid and the optimized
worst-force ellipsoid (24) whose generalized eigenvalues are
1.7 and 8.79. The projection (denoted with OWFME) on
Fig. 7. The five-bar linkage with all the joints actuated and the kinematic attie (w,, w,)-plane of this ellipsoid is reported in Fig. 7.
force, and manipulability ellipsoids. Finally, regarding internal forces, the manipulability ellipsoid
described in (23) is three-dimensional and its eigenvalues are
o3=[-1 0,o3=[0 0,os=[1 —1J,os=[1 —2]. [0.14 1.2 063]
For simplicity’s sake, we will consider all weight matrices as 4) Analysis of ResultsBased on the results of manipula-
identities. bility analysis, some distinctive features of the three different

By easy computations, it is checked thatr(GT) = designs are put into evidence. Actuators placed at joints 1 and
ker(J) = 0, hence the system in Fig. 4 has no indeterminadPprovide an elongated KME, with very high efficiency (9.74)
(T'; = 0) nor redundancyK,, , = 'y, . = I'pe . = 0), while in one direction, and much lower elsewhere. Actuators placed at
the dimension of the subspace of internal forkegG) is 3, joints 2and 4 provide lower highest efficiency (1.42), and higher

and the dimension of the subspace of zero-torque wrenchewest efficiency (0.22), i.e., a more balanced design. The geo-
ker(J7) is 1. metric information contained in the eigenvectors is also useful:

1) Actuators at Joints 1 and 5If only joints 1 and 5 are ac- for instance, if the task of the mechanism was to swipe fast in
tuated (see Fig. 5), the two generalized eigenvalues of the kitfege horizontal direction, while keeping precise positioning in
matic manipulability ellipsoid (11) evaluate to 9.74 and 0.51he vertical direction, then the second design would clearly be
The projection of the kinematic ellipsoid (KME) onto the plansuperior, because of a combination of Yoshikawa's and Salis-
(u., u,) is reported in Fig. 5. In the force domain, the activeury—Craig’s interpretations.
force ellipsoid (20) has two eigenvalues which evaluate to 1.95The design with all joints actuated provides lower eigenvalues
and 0.10. The projection of the active force manipulability elliphan both other designs. An intuitive explanation for this fact is
soid onto théw,,, w, )-plane (AFME) is reported in Fig. 5. The that, for any given velocity of the object, all five actuators have
eigenvalues of the passive force ellipsoid are computed as 2.the controlled to nonzero velocity to comply with the motion,
0.11, andx. The latter eigenvalue corresponds to an externaihd their velocity represent a cost in the Yoshikawa's efficiency
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Fig. 9. Anglesx andg used as parameters in the design of a Stewart platform.

According to our cooperating manipulation paradigm, the plat-
form is regarded here as a system of six limbs (legs), each with
three unactuated joints (forming a spherical joint at the base of
. . the leg) and one actuated prismatic joint in their middle. Bet
mdgx. Qn the other hand, an ad.""?‘f“age of hav!ng redundant &hote the position of thigh spherical joint at the base, afy
tuation is a_lpparent in the_pos_s|b|l|ty of achieving a more b he position of theéth contact joint on the upper platform. Joints
anced c_JIeS|gn (ro_under eII|p§0|d), a.lr_'d overall a much better %\?’B are modeled as soft-finger contacts with contact normal
culrac%/ mfthe Sda“Sbl.er_Cr?'g S spirit. iderati Vot z,; directed along the corresponding leg’s axis joiniRgand
b nt € c()jrcs omain, an? c;]gouz consi erauon; app;(;. t 'Sﬁ%. Notice that, should spherical joints be used for upper joints,
€ noticed that in none of the above cases active and Pasgg, imensional subspace of kinematically indeterminate mo-
force ellipsoids coincide, the difference being larger in the 1T%ns of the system would result, consisting of rotations of the

design. legs about their axes, which are unwanted.
B. Stewart Platform The optimization problem variables are the positidghsand

In thi . Is f ioulabili vsis devel ﬁz ¢ =1, ---, 6. To reduce the dimensionality of the problem,
n this section, tools for manipulability analysis develope owever, we fix positions of the upper joint, with consec-

so far are applied to opt|m|_ze_the dey_gn (.)f a S_tewart platformive pairs coincident at the vertices of an equilateral triangle

(see Fig. 8). The 995" of optimized des'gn IS to_flnd a r?Iacem_%‘écribed into a circle of radius 1.5 m. The lower joints with

of _the .Iegs endpoints, such that the Ignemgnc man'pUIab'“B'dd index, and those with even index, are placed at the vertices

ellipsoid evaluated at a reference configuration of the platforq)lf two equilateral triangles inscribed into a circle of radius 2 m

is as similar as possible to a prescribed ellipsoid, which is cho R Fig. 9). The triangle of verticéB1, By, Bs) is placed at

(as suggested in[18]) so as to incorporate the task specificatio, anglen W.r.t. to thez-axis of the ba’se fr7ame, while the tri-
Let the reference configuration of the platform have origin %tngle of vertice¢ B, B, Bg) is placed at an ange.

Po = (0, 0, 2)m andR, = I. Also, we assume for simplicity - generic desigtie, ), the platform exhibits no indeter-

W, to be the identity matrix (in the chosen reference and mer%_i acy [;; is zero), see (10). However, a kinematic indeter-
surement units), and let the desired task ellipsoid in the space gpacy L ' ' '

end-effector twists1 be isotropic in the translation componentmmacy(r” # 0) appears fosingular parameter sets [9]. In

and in the orientation components. namel ?he case of Fig. 9, singularity appears when= «. Singu-
P ' y larity generates kinematic indeterminacy, i.e., a nonvoid block

L', ;, making platform and passive joints motions even with

Fig. 8. The model of a 6-DOF Stewart platform.

Wiask active joints locked. Obviously, as pointed out in [16], indeter-
m?  m? m? rad? rad? rad? ; ; . . . - .
=diag [1—=,1—=, —.0.2 0.2 0.2 . minacy should be avoided in practical device design. At singu-
g 20120 a2 2 2 2 i ) T -
S §7 8 S 5 s larities 2 = «, the kinematic ellipsoid in (11) exhibits three

] ] ] ) infinite generalized eigenvalues whose eigenvectors are the in-
The problem is to find the design which makes the platform§aterminate (or singular) directions of the mechanism. From a
kinematic ellipsoid geometric point of view, when = 3 = 0 all legs intersect at
al'W,u a s?ngle poin.t, which.represents a particular case in Hunt's de-
W4 scription of singularities for parallel robots ([7]).
! The inverse of cos is plotted in Fig. 10. Numerical esti-
with W, = Wt_aik, as close to a unit sphere as possible. mates of optimal design parameters are obtainedvas< 1°,

In order to have a scalar cost to minimize with respect to thie = —120°), corresponding to point/; in Fig. 10, and ¢ =
design parameters, we choose (with some degree of arbitraringss?; = 120°) (Mz). At these points, the same scalar cost is
which is unfortunately unavoidable) the sum of square errors tagtained ' = 1/1.67), as they represent symmetric configura-
tween the maximum and minimum eigenvalues of the ellipsoitiens.

The resulting active kinematic manipulability ellipsoid eval-
C = (Amax — 1)% + Amin — 1)%. uated at the optimunug = 1°, 8> = 120°) has the following
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: . TABLE |
: co SELECTORS FORDIFFERENTCONTACT TYPES
Force Selector | Moment Selector
o Contact Type 7S, M,
Point Contact T 0
w/o Friction ¢ 1x(d-s)
Point Contact
- w/h Friction I, 01 (d—s)
: (Hard-Finger)
o Li?;e gr(i):tt;lclf 27 (S(z:)x;)T
Fig. 10. Optimization results for a 2-DOF design of a Stewart platform. Best hid - =
designs with respect to the chosen criterion correspond to higher values of the 3D Line Contact 7 (S(zi)x;)
inverse cost function. w/h Friction ¢ z]
) 3D Planar Contact T x7
eigenvalues w/o Friction : yT
1 1 098 0.23 0.23 0.23] Planar Contact
w/h Friction I, | PR
with corresponding eigenvectors (in the space of platform (Complete-Constraint)
twists) 3D Soft Finger I; 7]
-8 -92 8 1 10 -2 TABLE I
6 —126 -5 3 1 1 SELECTORS FORDIFFERENT JOINT TYPES
-2 -1 -8 3 =78 —4
1 b1 T 11 45 —6| Joint Type |Force Selector F'S; | Moment Selector M S;
-2 15 1 10 —17 8 =
4 -3 -19 -1 35 2 3D Rotoidal 1, { " ]
i

Note that the resulting ellipsoid is not very close to the desired
shape and size, itis however the best possible approximation (in 2D Rotoidal I, 0
the sense specified by the ca8tgiven the constraints imposed

on the design. 3D Prismatic [ ol ] I
In the force domain, for generiex and 3, there are no vl s

wrenches that can be balanced with zero actuator tordues (

andI';, are void). It is noteworthy that, although the nullspace 2D Prismatic x7 1

of the grasp matrixG is 12-dimensional, the subspace of

active internal forces is triviall{;, andI'y; are void). As a 3D Spherical 13 01y3

consequence of these facts, there is no difference between

passive and active force manipulability, and both are dual to

the kinematic case. joints, respectively, and et do + ¢p. Let n the number of
contacts, and set

VI. CONCLUSIONS

o . . . 1T o
. . q2[Q17Q27"'7q(1] ’ qERq
In th|s_pa_per, we have extendeq some tqols d_eyeloped in T = [, T2, Tq]T’ 7 € RY
the robotic literature for the analysis of manipulability of se- T
. . . . . . 7 — T T . Rd
rial-chain manipulators to more general mechanisms, including u=[v', W], uc
: . : > . T
closed chains with free kinematic pairs. Results allow to attack w=[t7, m?]", w € R?

the manipulability analysis of many more mechanisms than

previously possible, and are applied to the study of optimiz&¢herev () is the linear (angular) velocity of the object afd
design of a five-bar closed-chain mechanism, and of a Stew@#) is the force (moment) on the object.

platform. Further study is necessary to address some importanket matrixJ represent the aggregated Jacobian of the mecha-
open prob|ems1 such as second order man|pu|ab|||ty ana|y§]§m limbs, i.e., the linear map between jOint velocities and the
and manipulability of systems with nonholonomic constraint¥elocities (in all directions) of frames attached to limbs at con-

such as, e.g., cooperating wheeled vehicles. tact points; and analogously, l&t” be the object grasp matrix,
mapping object velocities into velocities of contact frames on
APPENDIX A the object (for a constructive description of these matrices, see,
NOTATION e.g., [1]). Rigid-body contact constraints of different types can

) be written as
Lets = 2, d = 3 for 2-D mechanisms, angl= 3, d = 6 for

3-D ones. Lety,, g, be the number of actuated and passive H (jq - GTI'I) =Jq-G'a=0
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where the selection matriM is built by removing all the zero [13] J. K. Salisbury and J. J. Craig, “Articulated hands, force control and

rows from a matrix kinematic issues,Int. J. Robot. Resvol. 1, no. 1, pp. 4-17, 1982.
[14] G. stranglinear Algebra and Its Applications Orlando, FL: Harcourt
2~ - Brace Jovanovich, 1988.
H = diag (FSy, -+, FS,, MSy, -+, MS,,). [15] J.T.Wen and L. S. Wilfinger, “Kinematic manipulability of general con-
. . . strained rigid multibody systemsProc. IEEE Int. Conf. on Robotics
which is comprised offorce selector(F'S) and moment se- and Automationpp. 1020-1025, 1998.
lector (MS) blocks, chosen according to different differential [16] ——, “Kinematic manipulability of general constrained rigid multibody

; ; ; systems,IEEE Trans. Robot. Automatol. 15, pp. 558-567, Apr. 1999.
constraints between the limbs and the object. The range spage; +’\oqhikawa, “Manipulability of robotics mechanismégit. J. Robot.

of the transpose of a selector block represents directions in ° Res, vol. 4, no. 2, pp. 3-9, 1985.

which relative velocities are prohibited by the constraint. Somé18] Z.Li, P. Hsu, and S. S. Sastry, “Grasping and coordinated manipulation
examples of selector blocks are reported in Table | for some gg_%g“i'ggggered robot hand/ht. J. Robot. Res.ol. 8, no. 4, pp.
commonly encountered contact types, and in Table Il for a few ' '

common kinematic joints. In Table I, vectogs represent the

unit surface normal at th&h contact whilex; andy; are two

unit vectors defining the line and plane of contact. In Table I' Antonio Bicchi graduated from the University of

vectorsx; andy; denote two unit vectors normal to the joint Bologna, Bologna, Italy, in 1988.

axis z; From 1988 to 1990, he was a Postdoctoral Scholar
v at the M.L.T. Artificial Intelligence Laboratory. He is

currently an Associate Professor of Systems Theory

and Robotics in the Department of Electrical Sys-

tems and Automation (DSEA) of the University of

Pisa, Pisa, Italy. Since 1990, he has been leading the
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