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Manipulability of Cooperating Robots with
Unactuated Joints and Closed-Chain Mechanisms

Antonio Bicchi and Domenico Prattichizzo, Member, IEEE

Abstract—In this paper, we study the differential kinematics
and the kineto-static manipulability indices of multiple coop-
erating robot arms, including active and passive joints. The
kinematic manipulability indices are derived extending previous
results on cooperating robots without passive joints. The force
manipulability analysis for cooperative robot systems cannot
be straightforwardly derived by “duality” arguments as it can
with conventional arms, rather a distinction between active
and passive force manipulability must be introduced. Results in
this paper apply directly to the analysis of cooperating robots,
parallel robots, dextrous robotic hands and legged vehicles, and,
in general, to closed kinematic chains.

Index Terms—Closed-chain mechanisms, cooperating robots,
dextrous manipulation, kinematic and force manipulability,
parallel robots.

I. INTRODUCTION

SINCE their original proposition [13], [17], manipulability
indices have been widely used in robotics analysis, task

specification, and mechanism design. As is well known, the
basic idea of manipulability analysis consists of describing di-
rections in the task or joint space that extremize the ratio be-
tween some measure of effort in joint space and a measure
of performance in task space. Whenever these measures are
quadratic functions of the joint and task variables, respectively,
and there is a linear relationship between the two sets of vari-
ables, then manipulability analysis amounts to the analysis of an
eigenvalue-eigenvector problem. A typical result of such anal-
ysis is reported in Fig. 1, where the familiar ellipsoid represen-
tation in task space is used for velocity and force related perfor-
mance/effort ratios. The extension of manipulability analysis to
multiple cooperating robots has been studied by several authors
so far. Lee [8] and Chiacchioet al. [5] proposed extensions for
the case when all cooperating arms have full mobility in their
task space. Bicchiet al. [1] extended the kinematic manipula-
bility ellipsoid problem to general cooperating arms, with arbi-
trary number of joints per arm. Melchiorri [10] applied similar
tools to address force manipulability in fully actuated mecha-
nisms. The three papers [15], [11], [4] presented at the same con-
ference session discussed different aspects of this problem. Wen
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Fig. 1. Velocity and force ellipsoids in the task space of a serial-chain, fully
actuated robot arm. By classical duality arguments, the principal directions are
the same, while the lengths of axes are inversely proportional.

and Wilfinger [15] (see also [16]) extended the concept of kine-
matic manipulability to general constrained rigid multibody sys-
tems including closed kinematic chains. Park and Kim [11] (see
also [12]) studied manipulability of closed chains, including un-
actuated joints, using an elegant differential geometric formula-
tion. The authors [4] (see also [3]) discussed the problem in-
cluding effects of redundancy and indeterminacy of kinematics,
and introduced the notion of active and passive force manipula-
bility.

With respect to existing literature on the subject, the main
contribution of this paper is threefold. Firstly, we explicitly de-
scribe a systematic procedure for building the kinematic model
of a system of cooperating robots with passive joints, which can
be used to attack a wide generality of mechanisms (such con-
struction is only illustrated by particular examples in [15] and
[11]). Secondly, by providing physical interpretations of manip-
ulability results from different viewpoints (e.g., Yoshikawa’s ef-
ficiency and Salisbury/Craig’s accuracy viewpoints), we treat
otherwise ill-posed kinematic redundancy and indeterminacy
problems as optimization (or worst-case) problems. Finally, we
propose a detailed study of manipulability in the force domain
and show that a distinction betweenactiveandpassiveforce ma-
nipulability must be introduced to obtain a full understanding of
the characteristics of a closed-chain mechanism.

This paper is organized as follows. We preliminary show how
several closed-chain problems can be solved by use of the for-
mulation given in [1]. For cases when this is not possible, we
introduce a generalization of those methods, which applies to
general closed-chain systems (Section II). Manipulability in-
dices are discussed in the kinematic domain in Section III, and
in the force domain in Section IV. We conclude the paper by
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Fig. 2. The four-bar linkage (a) with unactuated joints (in white) adjacent to
the reference member can be considered as a manipulation system and (b) with
two one-joint fingers, one object (in black), and two soft-finger contacts. More
generally, the four-bar linkage (c) can be represented as a manipulation system
with two two-joint fingers, one object (in black), and two complete-constraint
contacts.

illustrating applications of our results with two examples (Sec-
tion V), where the proposed techniques are used to actually per-
form optimized design of closed-chain manipulators.

II. PROBLEM FORMULATION

The approach we follow to analyze kinematics and statics of
closed-chain mechanical system is to consider them as embodi-
ments of a cooperative manipulation paradigm, where multiple
robotic limbs (or fingers) interact with anobjectat a number
of contacts. The object is the reference member of the mecha-
nism, whose motions and forces are the ultimate goal of anal-
ysis. Contacts represent in fact unactuated kinematic pairs of
different nature between the object and the contacting link, that
restrict some or all the components of the relative velocities of
the two bodies.

In [1], a notation for describing such systems was established
which is recalled in Appendix A. In that paper, each limb is al-
lowed an arbitrary number of joints. Contacts with the object
are allowed at any link of the various limbs. Fig. 2(a) shows
how a four-bar linkage with the two middle joints not actuated,
and Fig. 2(b) shows how it can be thought of as a system of
two cooperating fingers and an object, with two contacts of bi-
lateral soft-finger type.1 For more general cases, where the un-
actuated joints are not all adjacent to one element of the chain,
e.g., Fig. 2(c), or when that element is not the member whose
motions should be studied, methods of [1] have to be extended
as described in the rest of this paper.

Consider a system of cooperating robotic limbs, comprised
of actuated joints, and unactuated (passive) simple kine-
matic joints, which interact with an object atcontact points
according to contact models as specified by a selection matrix

(see Appendix A). Let the aggregated Jacobian matrix of the
cooperating devices be denoted, and let the object Jacobian

1Soft-finger contacts prevent all relative linear velocities, and allow relative
angular velocities in the plane of contact, see Appendix A.

(or grasp matrix) be . A suitable permutation matrix can
be found that reorders joint variablesto have actuated joints on
top, and unactuated joints at bottom, ,
where (respectively, ) is the ( )-vector of actuated (un-
actuated) joint velocities. Correspondingly, the Jacobian matrix
is partitioned as

The mobility of the system is then studied by analyzing the con-
straint equation

(1)

where , and . All pos-
sible motions of the system belong to the nullspace (or kernel)
of the constraint matrix and, hence, can be
rewritten as linear combinations of vectors forming a basis of
the nullspace. By suitable linear algebra operations (see, e.g.,
[1]), such a basis can always be written in a block-partitioned
form

(2)

In (2), is a basis matrix of and incorporates
the redundancy2 of the actuated part of the mechanism: all
possible rigid-body motions of the actuated joints when both
the reference member and the passive joints are locked can be
written as linear combinations of columns of . Conversely,

in (2) represents all possible motions
of the system, when actuated joints are locked. We will refer
to the column space of as thekinematic indeterminacy
subspace of the mechanisms at the given configuration.3 The
second block column of the matrix in (2) characterizes the
coordinate motions of the system. Vectors represent
the unique possible motion of the passive joints and of the
object, coordinated with motions of actuated joint.

A finer partition of block matrices in (2) provides a more de-
tailed analysis of mobility of systems under investigation. By
some algebraic manipulation, the indeterminate motion term
can be rewritten as

(3)

Here, incorporates all motions of passive joints
which are free (redundant) when both active joints and reference
member (object) locked (as, e.g., in a Stewart platform whose
legs can rotate freely about the spherical joints at their extrem-
ities). On the other hand, represents motions

2As a variable naming convention, we use subscripts with the initial letter
of the relevant keyword. The letter is underlined at the first occurrence of the
keyword.

3The terminstability is used in [16]. We prefer to avoid reference to stability
concepts in this quasi-static setting. Furthermore, the dual case in the force do-
main is customarily defined asstatic indeterminacy.
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of the object that are indeterminate, i.e., not constrained (up to
first order), when all joints, active and passive, are locked. The
passive joint motions that lie in the image (or column space)
of correspond one-to-one to object motions in the image
of when active joints are locked (hence are kinematically
indeterminate). Kinematic indeterminacy with nonvoid blocks

, and imply that the velocity of the task frame
fixed to the object is not uniquely determined when active joints
velocities are, hence typically represent an undesirable condi-
tion which may be obtained at singular configurations.

The second block column in (2) can also be rewritten as

(4)

showing: coordinate motions of the actuated and passive joints
while the object is locked (first block column); coordinate
motions of actuated joints and object with locked unactuated
joints (third block column); and motions that are only possible
by coordinated simultaneous movement of object, active and
passive joints (second block column).

Summarizing results of (2)–(4), a kinematic description of
all possible motions of a general closed-chain mechanism can
be given in (5), shown at the bottom of the page, where

.
The method of analysis based on the cooperative robots par-

adigm as described in this section can be applied to general
closed kinematic chains. For example, to the four-bar linkage
of Fig. 2(c), where the only actuated joint is in the middle of
the chain. An equivalent manipulation system is depicted in
Fig. 2(d), for the case when the reference member of interest
in the linkage is its middle link. The system is now regarded as
being comprised of two limbs with two joints, three of which are
unactuated (in white), and an object (in black) grasped by two
completely constraining contacts. Other examples of applica-
tion to a five-bar linkage and to a Stewart platform are reported
in Section V.

III. K INEMATIC MANIPULABILITY

A kinematic manipulability index, in the sense of Yoshikawa
[17], can be defined in terms of the ratio of a measure of per-
formance in the task space and a measure of effort in the joint
space. Taking these measures to be suitably defined two-norms
of velocities, an index can be written as

(6)

where , are positive definite matrices whose role is
to weight different components of velocities in the two spaces

(including the case of nonhomogeneous units for linear or an-
gular velocities). Observe that this choice of weights effectively
amounts to defining a metric on the tangent space to the task
and joint manifolds [12]. In practice, the choice of is made
based on how much it “costs” to run a certain actuator at unit
velocity. The choice of is usually made based on the task
specifications (see, e.g., [18] and Section V).

It should also be pointed out that a different interpretation of
manipulability indices is possible, in the original spirit of the
work of Salisbury and Craig [13], as one can consider differen-
tial motions instead of velocities, and regard

(7)

as the ratio between a norm of errors in positioning the end-ef-
fector , and a norm of errors in controlling the joints to
their set-points (the latter errors being regarded as causes of
the former, and both being considered small enough to be ap-
proximated with their differential). The analytic formulation of
the Yoshikawa’s problem and the Salisbury–Craig problem are
quite similar, although different interpretations of results are in
order (typically, what is a “good” direction for one problem is
“bad” for the other).

As we are interested in performance in the space of velocities
of the reference member, and efforts (or errors) in the space
of actuated (and measured) joints, the index (6) is rewritten as

(8)

The analysis of which directions in the task space (and corre-
sponding directions in the actuated joint space) maximize or
minimize is easily solved once a correspondence between
the numerator and denominator variables, namelyand , in
(8) is established. Note that in order for ratio (6) to be well-de-
fined, a one-to-one mapping should be established between the
two variables. To find such mapping, rewrite (5) as

(9)

where

(10)

and vectors , , and parameterize unconstrained motions
of active joints when the reference member is locked, object
motions when active joints are locked, and coordinate motions
of active joints and object, respectively.

(5)
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From (9), it appears that a one-to-one relationship between
task and actuated joints velocities does not exist in general, be-
cause of the possible presence of redundancy (matrix) and
indeterminacy (matrix ). This problem can be circumvented
if the physical interpretation of manipulability ratios is taken
into account.

Consider first the case that there is redundancy, but no inde-
terminacy ( ). From Yoshikawa’s viewpoint, it is rea-
sonable to assume that if more than one actuated joint velocity
can be chosen corresponding to some task velocity, then the one
with minimum cost will be preferred in the controller policy
(different redundancy resolution schemes can be accommodated
for by suitable choices of the cost weights ). We might then
redefine anoptimizedefficiency ratio (8) for redundant systems
as

- (11)

From the Salisbury–Craig’s viewpoint, redundancy of actuation
should conservatively be taken into account as if playing against
the mechanism accuracy, hence by considering theworst-case
controller error which, among those compatible with a given

, minimizes the denominator. Thus, the same mathematical
problem of (11) is obtained, with a very different physical in-
terpretation. The constrained minimization problem appearing
in the denominator of (11) can be readily solved by standard
linear algebraic tools (see, e.g., [14]). Since we will often meet
in the sequel similar problems, we introduce a specific nota-
tion for the projector matrix [where

denotes the -weighted pseudoin-
verse of ], such that the quadratic form subject to
the linear constraint has its global minimum in

. We have therefore that the minimum of the de-
nominator of (11) is

Hence, the kinematic manipulability analysis in the presence of
passive joints and redundancy is reduced to studying the ratio

- (12)

at varying , i.e., a generalized eigenvalue problem [6].
The case that the system is kinematically indeterminate

is of practical interest at the singularities of
the mechanism. Because of the existence of nonzero task
frame twists corresponding to zero active joint velocities,
the efficiency index in (11) results unbounded. From the
Salisbury–Craig viewpoint, this means that near-singular
configurations are very inaccurate. In Yoshikawa’s perspec-
tive, however, where (11) represents a performance, only a
worst-case approach would make sense, whereby the least
feasible object velocity is assumed to occur for a given active
joint velocity. A manipulability ratio for kinematically redun-
dant and indeterminate mechanisms, which isoptimizedw.r.t.

redundancy andworst-casew.r.t. indeterminacy, is thus defined
as

(13)

IV. FORCEMANIPULABILITY

The force manipulability index is similarly defined as the
ratio of a performance measure in the space of forces exchanged
with the environment, and an effort measure in the space of ac-
tuated joint torques

(14)

Here, weights in incorporate different costs in generating
torque or forces at joints, and takes care of mismatches of
measurement units between rotational and prismatic joints.
Weights in adjust for different units of components of the
six-dimensional wrench , and may represent task specifica-
tions (such as greater leverage in some direction). A physically
motivated choice could be taking as the stiffness matrix of
the environment with which the reference member interacts.4

From application of the virtual work principle, the relation
between wrenches on the reference memberand the vector

of contact forces at equilibrium is , while actuated
joint torques are related to contact forces as .
Furthermore, the fact that no torque is applied at passive joints
is expressed as . These relations can be rewritten in
matrix form as

(15)

Remark: For a static equilibrium to be possible with unre-
stricted active joint torques, it is necessary and sufficient that
wrenches applied on the reference member satisfy

(16)

The possibility for the mechanism to balance an arbitrary
wrench is naturally related to the kinematic indeterminacy
of the system. In fact, condition (16) for all implies

(17)

(18)

and this in turn implies that blocks , , and are
void in (3). Redundancy in passive joints [corresponding to a
nonvoid block in (3)] does not influence the possibility of
balancing arbitrary external wrenches.

In the grasping literature, contact forces in the nullspace of
are usually referred to asinternal (or homogeneous) forces,

which physically represent forces that do not affect the balance

4In this case, the numerator of (14) would represent twice the elastic energy
of interaction.
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Fig. 3. A cooperating system may actively exert a wrench (a) and passively
resist an external wrench (b) with best efficiency in different directions.

of the object; we will also refer to contact forces that lie both
in the nullspace of and in the nullspace of (i.e., forces
at the contact points that do not affect the balance of the limbs)
as tostructuralforces. A mechanism is calledstatically indert-
erminateif . If (and only if) the system
is not statically indeterminate, all equilibrium combinations of
external wrenches and active joint torques solving (15) can be
obtained by an algorithm similar to that used in Section II and
described in [1], in the form

(19)

Notice that a similar decomposition of forces was used by
[10], although passive joints and statically indeterminate
systems were not considered. Here, contact forces such as

[which belong to ] represent active
internal (or homogeneous) forces that do not affect the balance
of the object, nor the passive joints; such internal forces are
counterbalanced by torques at the active joints . On
the other hand, contact forces such as [belonging to

] represent structural contact forces that are
balanced by zero torques at the joints and by wrenches on the
object . Finally, the second block column of the matrix
in (19) characterizes the actual force transmission from active
joint torques to object wrenches, and vice versa: wrenches
such as represent the unique possible wrench on the
object corresponding to actuated joint torques , and both
uniquely correspond to contact forces . Notice that the
decomposition in (19) can always be made such that blocks
in the same row are mutually orthogonal w.r.t. the internal
product defined on their range space, such that ,

.
In dealing with force manipulability analysis for closed kine-

matic chains, it is necessary to introduce a finer discussion of
different types of performance indices and costs associated with
different tasks. In particular, a distinction betweenactiveand
passiveforce manipulability should be introduced. The motiva-
tion for such a distinction clearly results by observing the simple
examples described in Fig. 3. It appears that the wrenches that
a manipulation system is able to apply most efficiently through
the object to the environment, may differ from wrenches that
are most efficiently resisted if external loads act on the object.

It is then natural to introduce two distinct force manipulability
indices.

A. Active Force Manipulability

For a given set of equilibrium torques at the actuated joints,
i.e., for given and in (19), the corresponding wrench is
not uniquely defined if a nullspace of exists.
However, in the worst case (when wrenchesare considered
to play against maximization of the index), efficiency will be
given by

(20)

Note that if takes into account the environmental stiffness,
minimization of the numerator amounts to assuming that the
mechanism apply, for the given joint torques, the wrench that
minimizes the energy of elastic deformation. By using suitable
projector matrices, one readily gets

Therefore, the worst-case active force manipulability analysis is
reduced to studying the ratio

that is again a generalized eigenvalue problem. The discussion
of the ellipsoid is similar to the one given above for kinematic
manipulability. Note that the numerator quadratic form has a
number of zero eigenvalues equal to the components of, cor-
responding to joint torques balanced by purely internal contact
forces, with no net effect on the object balance, that obviously
give zero efficiency. If applied to the mechanism in Fig. 3, this
analysis would assign maximum efficiency to forces pushing
horizontally, and zero efficiency in the vertical direction: this
result is consistent with the intuitive notion of active force ma-
nipulability illustrated in Fig. 3(a).

B. Passive Force Manipulability

For a given equilibrium wrench acting externally on the refer-
ence member, i.e., for given and in (19), the corresponding
joint torques are not uniquely defined if a nullspace of(in-
ternal contact forces) exists. However, it is reasonable to assume
that the controller policy will specify that the torque with min-
imum cost be chosen to oppose a given wrench. The optimized
passive force efficiency will hence be given by

(21)

Using the projector notation above established, one gets
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and the optimized passive force manipulability analysis is
studied by the ratio shown below

where again is used. Note that the denomi-
nator quadratic form has a number of zero eigenvalues equal to
the components of , corresponding to wrenches balanced by
structural constraints, with no net effect on the active joints [nor
on the passive, because of the equilibrium condition (15), that
obviously give infinite efficiency. If applied to the mechanism
in Fig. 3, this analysis would assign maximum (actually infinite)
efficiency to forces pushing vertically, and smaller efficiency in
the horizontal direction, consistently with the intuitive notion of
passive force manipulability illustrated in Fig. 3(b).

C. Internal Force Manipulability

According to (19), the subspace of internal forces coincides
with and corresponds to the column space of matrix

, while the associated actuated joint torque subspace cor-
responds to the column space of. Notice that does not
depend (for statically determinate mechanisms) on the system
Jacobian, nor as a consequence, on the finger joint positions.
An explicit one-to-one mapping between internal forces

and joint torques exists such that the in-
ternal force manipulability index can be defined as the ratio of a
performance measure in the space of’s, and an effort measure
in the space of ’s

(22)

The study of internal forces manipulability ellipsoids reduces to
studying the ratio

(23)

which can be straightforwardly addressed along the lines of pre-
vious cases.

It is important to point out that, for mechanisms including uni-
lateral and/or frictional contact constraints (such as is the case in
dextrous manipulation) internal forces may have a fundamental
role in avoiding that contacts are broken or slip. Typically, in
order to fulfill such constraints, components of the internal force
vector must belong to some nonlinearly-bounded subset of
the image of . In [2], such subset was shown to be convex, and
an efficient algorithm to find the internal force vectormaxi-
mizing a distance from the subset boundaries was provided. The
“optimal” vector depends in general on matrix and on the
applied wrench , but not on the system Jacobian. Because

is full rank and , there exists a unique
such that . The ratio should therefore

be evaluated at . The utility of (23) is hence to find the

Fig. 4. A five-bar linkage used as a case study.

“best” configuration of the hand for a given grasp, which min-
imizes the actuator effort necessary to exert the optimal contact
force , through modification of . This amounts to max-
imizing as a function of , i.e., aligning the major axis
of the ellipsoid in (23) with .

D. Duality

In the treatment of kinematic and force manipulability con-
ducted so far, the usual duality relationship between kinematic
and force ellipsoids is somewhat concealed. Indeed, for mecha-
nisms such as those considered in this paper, the kinematic and
force domains do have differences in practice. While the exis-
tence of (internal forces) and (zero-torque con-
tact forces) is the norm in practical devices, existence of a redun-
dancy subspace is not so frequent, and systems with non-
trivial , (contact) indeterminacy, are exceptional. This
explains why the two domains have been treated differently.

Kineto-static duality for (13) is revealed when con-
sidering, in the force domain, theworst-case(w.r.t. structural
forces),optimized(w.r.t. internal forces) efficiency index

(24)

Indeed, when (13) and (24) are compared assuming
, it is found that the Rayleigh ratios (13) and (24) have

numerator and denominator exchanged (this can be verified con-
sidering that, because of the principle of virtual work, it holds

, ).

V. CASE STUDIES

A. Five-Bar Linkage

As a first case study, consider a five-bar closed chain de-
scribed as a two-arm cooperating system (see Fig. 4). We want
to investigate the effects on kinematic and force manipulability
of different design choices about the number and the location of
actuators at the joints of the chain. In particular, we will com-
pare two designs with two actuators placed at joints 1 and 5
(see Fig. 5), and at joints 2 and 4 (see Fig. 6), respectively,
and a fully actuated design (see Fig. 7). Comparisons will be
made about the nominal configuration depicted in Fig. 4, for
which contact points coordinates are and

, contact types are modeled as complete con-
straints, the object frame origin is at , and the coor-
dinates of the centers of the five joints are ,



342 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 16, NO. 4, AUGUST 2000

Fig. 5. The five-bar linkage with joints 1 and 5 actuated, along with kinematic,
active force, and passive force manipulability ellipsoids.

Fig. 6. The five-bar linkage with joints 2 and 4 actuated and the kinematic and
force manipulability ellipsoids.

Fig. 7. The five-bar linkage with all the joints actuated and the kinematic and
force, and manipulability ellipsoids.

, , , .
For simplicity’s sake, we will consider all weight matrices as
identities.

By easy computations, it is checked that
, hence the system in Fig. 4 has no indeterminacy

( ) nor redundancy ( ), while
the dimension of the subspace of internal forces is 3,
and the dimension of the subspace of zero-torque wrenches

is 1.
1) Actuators at Joints 1 and 5:If only joints 1 and 5 are ac-

tuated (see Fig. 5), the two generalized eigenvalues of the kine-
matic manipulability ellipsoid (11) evaluate to 9.74 and 0.51.
The projection of the kinematic ellipsoid (KME) onto the plane

is reported in Fig. 5. In the force domain, the active
force ellipsoid (20) has two eigenvalues which evaluate to 1.95
and 0.10. The projection of the active force manipulability ellip-
soid onto the -plane (AFME) is reported in Fig. 5. The
eigenvalues of the passive force ellipsoid are computed as 2.04,
0.11, and . The latter eigenvalue corresponds to an external

wrench (in direction ) resisted by the mecha-
nism with zero torques: the passive force ellipsoid (21) degen-
erates to a cylinder whose intersection with the plane
is the PFM ellipse represented in Fig. 5.

The subspace of reachable internal forces is trivial in this case
( ), and duality is found between the kinematic
manipulability ellipsoid and the active force ellipsoid.

2) Actuators at Joints 2 and 4:In this case, depicted in
Fig. 6, the two generalized eigenvalues of the kinematic ma-
nipulability ellipsoid evaluate to 1.42 and 0.22. The projection
of the kinematic ellipsoid (KME) onto the plane
is reported in Fig. 6. In the force domain, the active force
ellipsoid’s eigenvalues are 4.55 and 0.70. The projection of
the active force manipulability ellipsoid (AFME) is reported
in Fig. 6. The passive force ellipsoid degenerates to a cylinder
whose intersection with the -plane is reported in
Fig. 6. The efficiency indexes are . No internal
forces ( ) are present in the mechanism and, as
for the previous case, the kinematic manipulability is dual to
the active force ellipsoid.

3) Actuators at All Joints:If all joints are actuated (Fig. 7),
the kinematic manipulability ellipsoid is described by two
generalized eigenvalues, 0.59 and 0.11. The projection of the
kinematic ellipsoid (KME) onto the plane is reported
in Fig. 7. The active force ellipsoid has eigenvalues 1.38
and 4.68. The projection of the active force manipulability
ellipsoid (AFME) is reported in Fig. 7. The passive force
ellipsoid degenerates to a cylinder whose intersection with the

-plane is reported in Fig. 7. The efficiency indexes
are . Differently from previous cases, here, the
mechanism exhibits a three-dimensional subspace of reachable
internal forces along with the one-dimensional
subspace of structural forces . Duality is found be-
tween the kinematic manipulability ellipsoid and the optimized
worst-force ellipsoid (24) whose generalized eigenvalues are
1.7 and 8.79. The projection (denoted with OWFME) on
the -plane of this ellipsoid is reported in Fig. 7.
Finally, regarding internal forces, the manipulability ellipsoid
described in (23) is three-dimensional and its eigenvalues are

.
4) Analysis of Results:Based on the results of manipula-

bility analysis, some distinctive features of the three different
designs are put into evidence. Actuators placed at joints 1 and
5 provide an elongated KME, with very high efficiency (9.74)
in one direction, and much lower elsewhere. Actuators placed at
joints 2 and 4 provide lower highest efficiency (1.42), and higher
lowest efficiency (0.22), i.e., a more balanced design. The geo-
metric information contained in the eigenvectors is also useful:
for instance, if the task of the mechanism was to swipe fast in
the horizontal direction, while keeping precise positioning in
the vertical direction, then the second design would clearly be
superior, because of a combination of Yoshikawa’s and Salis-
bury–Craig’s interpretations.

The design with all joints actuated provides lower eigenvalues
than both other designs. An intuitive explanation for this fact is
that, for any given velocity of the object, all five actuators have
to be controlled to nonzero velocity to comply with the motion,
and their velocity represent a cost in the Yoshikawa’s efficiency
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Fig. 8. The model of a 6-DOF Stewart platform.

index. On the other hand, an advantage of having redundant ac-
tuation is apparent in the possibility of achieving a more bal-
anced design (rounder ellipsoid), and overall a much better ac-
curacy in the Salisbury–Craig’s spirit.

In the force domain, analogous considerations apply. It is to
be noticed that in none of the above cases active and passive
force ellipsoids coincide, the difference being larger in the 1–5
design.

B. Stewart Platform

In this section, tools for manipulability analysis developed
so far are applied to optimize the design of a Stewart platform
(see Fig. 8). The goal of optimized design is to find a placement
of the legs endpoints, such that the kinematic manipulability
ellipsoid evaluated at a reference configuration of the platform,
is as similar as possible to a prescribed ellipsoid, which is chosen
(as suggested in [18]) so as to incorporate the task specifications.

Let the reference configuration of the platform have origin at
and . Also, we assume for simplicity

to be the identity matrix (in the chosen reference and mea-
surement units), and let the desired task ellipsoid in the space of
end-effector twists be isotropic in the translation components
and in the orientation components, namely

The problem is to find the design which makes the platform’s
kinematic ellipsoid

with , as close to a unit sphere as possible.
In order to have a scalar cost to minimize with respect to the

design parameters, we choose (with some degree of arbitrariness
which is unfortunately unavoidable) the sum of square errors be-
tween the maximum and minimum eigenvalues of the ellipsoids

Fig. 9. Angles� and� used as parameters in the design of a Stewart platform.

According to our cooperating manipulation paradigm, the plat-
form is regarded here as a system of six limbs (legs), each with
three unactuated joints (forming a spherical joint at the base of
the leg) and one actuated prismatic joint in their middle. Let
denote the position of theth spherical joint at the base, and
the position of theth contact joint on the upper platform. Joints
at are modeled as soft-finger contacts with contact normal

directed along the corresponding leg’s axis joiningand
. Notice that, should spherical joints be used for upper joints,

a six-dimensional subspace of kinematically indeterminate mo-
tions of the system would result, consisting of rotations of the
legs about their axes, which are unwanted.

The optimization problem variables are the positionsand
, . To reduce the dimensionality of the problem,

however, we fix positions of the upper joints, with consec-
utive pairs coincident at the vertices of an equilateral triangle
inscribed into a circle of radius 1.5 m. The lower joints with
odd index, and those with even index, are placed at the vertices
of two equilateral triangles inscribed into a circle of radius 2 m
(see Fig. 9). The triangle of vertices is placed at
an angle w.r.t. to the -axis of the base frame, while the tri-
angle of vertices is placed at an angle.

In a generic design , the platform exhibits no indeter-
minacy ( is zero), see (10). However, a kinematic indeter-
minacy appears forsingular parameter sets [9]. In
the case of Fig. 9, singularity appears when . Singu-
larity generates kinematic indeterminacy, i.e., a nonvoid block

, making platform and passive joints motions even with
active joints locked. Obviously, as pointed out in [16], indeter-
minacy should be avoided in practical device design. At singu-
larities , the kinematic ellipsoid in (11) exhibits three
infinite generalized eigenvalues whose eigenvectors are the in-
determinate (or singular) directions of the mechanism. From a
geometric point of view, when all legs intersect at
a single point, which represents a particular case in Hunt’s de-
scription of singularities for parallel robots ([7]).

The inverse of cost is plotted in Fig. 10. Numerical esti-
mates of optimal design parameters are obtained as ( ,

), corresponding to point in Fig. 10, and (
, ) ( ). At these points, the same scalar cost is

attained ( ), as they represent symmetric configura-
tions.

The resulting active kinematic manipulability ellipsoid eval-
uated at the optimum ( , ) has the following
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Fig. 10. Optimization results for a 2-DOF design of a Stewart platform. Best
designs with respect to the chosen criterion correspond to higher values of the
inverse cost function.

eigenvalues

with corresponding eigenvectors (in the space of platform
twists)

Note that the resulting ellipsoid is not very close to the desired
shape and size, it is however the best possible approximation (in
the sense specified by the cost) given the constraints imposed
on the design.

In the force domain, for generic and , there are no
wrenches that can be balanced with zero actuator torques (
and are void). It is noteworthy that, although the nullspace
of the grasp matrix is 12-dimensional, the subspace of
active internal forces is trivial ( and are void). As a
consequence of these facts, there is no difference between
passive and active force manipulability, and both are dual to
the kinematic case.

VI. CONCLUSIONS

In this paper, we have extended some tools developed in
the robotic literature for the analysis of manipulability of se-
rial-chain manipulators to more general mechanisms, including
closed chains with free kinematic pairs. Results allow to attack
the manipulability analysis of many more mechanisms than
previously possible, and are applied to the study of optimized
design of a five-bar closed-chain mechanism, and of a Stewart
platform. Further study is necessary to address some important
open problems, such as second order manipulability analysis,
and manipulability of systems with nonholonomic constraints,
such as, e.g., cooperating wheeled vehicles.

APPENDIX A
NOTATION

Let for 2-D mechanisms, and for
3-D ones. Let be the number of actuated and passive

TABLE I
SELECTORS FORDIFFERENTCONTACT TYPES

TABLE II
SELECTORS FORDIFFERENTJOINT TYPES

joints, respectively, and . Let the number of
contacts, and set

where ( ) is the linear (angular) velocity of the object and
( ) is the force (moment) on the object.

Let matrix represent the aggregated Jacobian of the mecha-
nism limbs, i.e., the linear map between joint velocities and the
velocities (in all directions) of frames attached to limbs at con-
tact points; and analogously, let be the object grasp matrix,
mapping object velocities into velocities of contact frames on
the object (for a constructive description of these matrices, see,
e.g., [1]). Rigid-body contact constraints of different types can
be written as
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where the selection matrix is built by removing all the zero
rows from a matrix

which is comprised offorce selector( ) and moment se-
lector ( ) blocks, chosen according to different differential
constraints between the limbs and the object. The range space
of the transpose of a selector block represents directions in
which relative velocities are prohibited by the constraint. Some
examples of selector blocks are reported in Table I for some
commonly encountered contact types, and in Table II for a few
common kinematic joints. In Table I, vectors represent the
unit surface normal at theth contact while and are two
unit vectors defining the line and plane of contact. In Table II,
vectors and denote two unit vectors normal to the joint
axis .
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