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Abstract. Finite plans proved to be an efficient method to steer com-
plex control systems via feedback quantization. Such finite plans can be
encoded by finite-length words constructed on suitable alphabets, thus
permitting transmission on limited capacity channels. In particular flat
systems can be steered computing arbitrarily close approximations of a
desired equilibrium in polynomial time.

The paper investigates how the efficiency of planning is affected by the
choice of inputs, and provides some results as to optimal performance
in terms of accuracy and range. Efficiency is here measured in terms of
computational complexity and description length (in number of bits) of
finite plans.

1 Introduction

Consider the problem of planning inputs to efficiently steer a controllable dy-
namical system of the type

= f(z,u), e X CR",ueUCR" (1)

between neighborhoods of given initial and final equilibria. By any approxima-
tion procedure, one may achieve finite plans (for specific choice of initial and
finite states). However, we aim at designing finite plans, among equilibria of the
system, with short description length (measured in bits) and low computational
complexity.

Concerns about the complexity of describing plans show up whenever com-
munication or storage limitations are in place. Particularly fitting to this perspec-
tive are examples from robotics, where input symbols may represent commands
(aka behaviors, or modes.) For instance, for autonomous mobile rovers, high
level plans may be comprised of sequences of motion primitives such as wander,
look_for, avoid._wall, etc.; in the control of humanoids (see e.g. [17]), sym-
bols are encountered such as walk, run, stop, squat, etc.. To deal with real
implementations, such languages must be able to encode the richest variety of
tasks by words of the shortest length. Consider for instance the case where the
robotic agent receives its reference plans from a remote high-level control center



through a finite capacity communication channel, or plans are exchanged in a
networked system of a large number of simple semi-autonomous agents. In gen-
eral, it can be assumed that robots are capable of accepting finitely-described
reference signals, and can implement a finite number of possible different feed-
back strategies via the use of embedded controllers, according to the received
messages.

Finite plans steering was considered by many authors in recent years, e.g.
[15,9,12]. A general framework was proposed by introducing Motion Description
Languages in [4]. The line of research addressing finite hyerarchic abstractions
of continuous systems via bi-simulations ([21, 22, 20]) has several contact points
with the one presented in this paper. Of direct relevance to work presented here
is the quantitative analysis of the specification complexity of input sequences for
a class of automata, presented in [10]. The key result there is that feedback can
substantially reduce the specification complexity (i.e., the description length of
the shortest admissible plan) to reach a certain goal state.

In this paper we treat the more complex case of controlled dynamical systems
and, by introducing control encoding of a symbolic input language, we can com-
pute in polynomial time plans for flat systems, whose specification complexity
is logarithmic in the size of the region to be covered. In our context, we postu-
late that control decoders are available and embedded on the remotely controlled
plant. Decoders receive symbols from the planner, and translate them in suitable
control actions, possibly based on locally available state information.

The result is obtained following this reasoning. First we seek for a symbolic
encoding so that there exists a sublanguage, whose action on the system has
the desirable properties of additive groups, i.e. the actions of control words are
invertible and commute. Furthermore, under the action of words in this language,
the reachable set becomes a lattice. More precisely, a suitable (dynamic) feedback
encoding permits us to transform any flat system to:

2t =z+Hp, HeR™", pez™ (2)

Once reduced to this special form, we address the problem of optimally choosing
finite input sets in order to optimize the efficiency of plans. This objective is
achieved by the study on the minimal specification complexity for interval-filling
controls, derived from concurrent work of number-theoretic nature.

The effectiveness of the method is illustrate by Proposition 4.

1.1 Problem Description

Assume that system (1) is completely controllable, i.e. for any given two points
xo, T, a plan (i.e., a finite-support input function w : [t,T + t] — U) exists
that steers (1) from zg to z¢. An exact plan among initial and final point would
generically require an infinite-length description, thus we consider approximate
steering and address the following question:

Problem II: Given a compact subset M C X and a tolerance &, provide
a specification P of plans such that, for every pair (zo,zf) € M?, it exists



a plan in P steering the system (1) from z( to within an e-neighborhood
of zy.

We look for an efficient solution to this problem, where efficiency is intended
in terms of low computational complexity, i.e. minimal number of elementary
computations to be executed, and in terms of low specification complexity, i.e.
minimal number of bits necessary to represent the plan (cf. [10]).

2 Encoding control quanta

Symbolic control is inherently related to the definition of elementary control
events, or atoms, or quanta:

Definition 1. A control quantum is a couple (u,T) where u : X — L®(IRT x
X,U) and T : X — IR™. The set of control quanta is denoted by U.

Hence, a control quantum is essentially a feedback that is applied to the system,
starting at point g at time tg, until time to + T (xg). To each control quantum it
is natural to associate the map ¢, 7y : X — X, where ¢, 1) (o) is the solution
at time T'(xg) of the Cauchy problem corresponding to initial data xy and control

u(zg).

Definition 2. A control quantization consists in assigning a finite set U C U.
A (symbolic) control encoding on a control quantization is a map E : ¥ — U,
where X = {o1,09,...} is a finite set of symbols.

Given a control quantization and an encoder, we have the diagram X Eu 2,
D(X), where D(X) denotes the group of automorphisms on X. This can be

extended in an obvious way to X* 2w & D(X), where X* is the set
of words formed with letters from the alphabet X, including the empty string
e. We assume ¢ o E(e) = Id(X), i.e. the identity map in D(X). An action of
the monoid X* on X is thus defined. In general, being the action of X* just
a monoid, the analysis of its action on the state space can be quite hard, and
the structure of the reachable set under generic quantized controls can be very
intricated (even for linear systems: see e.g. [1, 6, 2]). However, we will show that,
appropriately choosing the quantization, for every flat system it is possible to
find a sub-language 2 of X* acting on IR™ as Z". Therefore, in suitable state
and input coordinates, the system takes the form (2).

To reach the desired special form (2), we focus our attention on designing en-
codings that achieve simple composition rules for the action of words in a sub-
language 2 C X*:

Vw € 2,3h(w) e R" :Vz € X, (¢" 0o E*(w))(z) = x + h(w), (3)

and
Ywy € 2,301 € 2: (9" 0o E*(w1)) 0 (9" 0 E* (1)) = T1d(X). (4)



The additivity rule (3) implies that actions commute, therefore, the global action
is independent from the order of application of control words in 2. Moreover we
have the following:

Proposition 1. Under rules (3), (4), there exists a sublanguage 2' C 2 such
that the corresponding reachable sets are lattices.

Proof. First notice that, by rules (3) and (4), {2 acts on the states as an additive
group. As a consequence, the reachable set from any point in X under the
concatenation of words in {2 is a set A generated by vectors h(w),w € (2,

A= {h(w1)>\1 + -+ h(wN))\N\)\l €Z,N e ]N}

If h(w) € Q", Yw € £2, then we can choose 2 = (2. Otherwise, we choose {2’
to consist of concatenations of only n words in X* which produce independent
vectors h(w).

A further important concern is that system (1) under symbolic control, maintains
the possibility of approximating arbitrarily well all reachable equilibria in its
state space, for suitable choices of symbols.

Definition 3. A control system & = f(x,u) is additively (or lattice) approach-
able if, for every e > 0, there exist a control quantization U. and an encoding
E*: 2 — U with card(U:) = q € IN, such that: i) the action of 2 obeys (3), (4),
and ii) for every xo, x5 € X, there exists x in the £2-orbit of xo with ||x—x¢| < €.

Remark 1. The reachable set being a lattice under quantization does not imply
additive approachability. For instance, consider the example used in [14] to illus-
trate the so—called kinodynamic planning method.This consists of a double in-
tegrator ¢ = u with piecewise constant encoding U = {ug = 0,u; = 1,us = —1}
on intervals of fixed length T' = 1. The sampled system reads

q+:q+q+5, it =q+u,

hence g(N) = ¢(0) + N(0) + 327, 2555 u(i), 4(N) = 4(0) + .2, u(i). The
reachable set from ¢(0) = ¢(0) = 0 is

nuwor = {[] <[] arez).

The quantization thus induces a lattice structure on the reachable set. The lat-
tice mesh can be reduced to any desired € resolution by scaling U or 7. How-
ever, the actions of control quanta do not compose according to rule (3): indeed,
¢*(uruz) # ¢*(uguq) (for instance, ¢* (ujus2)(0,0) = (1,0), while ¢* (ugu1)(0,0) =
(~1,0)).



The following theorem motivates the interest in seeking control encodings for
additive approachability, moreover Theorem 3 below shows the applicability of
the method.

Theorem 1. For an additively approachable system, a specification P for prob-
lem II can be given in polynomial time.

Proof. Consider a feedback encoding ensuring additive approachability. Arrange
a sufficient number ¢ of action vectors h(w;), w; € §2 in the columns of a matrix
H € R™™ 9. The reachable set from zg is thus a lattice xg + A, where A =
{HA\ € Z%}. Additive approachability guarantees that the dispersion of A can
be bounded by ic, hence, Vay, 3y € A : ||[zy — 29 — y|| < €. Finding a plan to
x¢ is thus reduced to solving the system of diophantine equations

y=HA. (5)

Each lattice coordinate \; represent directly the number of times the control
word w;, hence the corresponding sequence of control quanta, is to be used to
reach the goal. Due to additivity of the action, the order of application of the
w; is ininfluent. The linear integer programming problem (5) can be solved in
polynomial time with respect to the state space dimension n and p. Indeed, write
H in Hermite normal form, H = [L 0] U, where L € IR"*" is a nonnegative, lower
triangular, nonsingular matrix, and U € Q"™ is unimodular (i.e., obtained from
the identity matrix through elementary column operations). Once the Hermite
normal form of H has been computed (which can be done off-line in polynomial
time [18,23]), all possible plans to reach any desired configuration y are easily
obtained as A\ = U~ [L~ Yy, u], Vu € Z™".

2.1 Reducing the specification complexity

We now address the specification complexity for problem I7 for a system in form
(2). Without loss of generality to the purposes of this section, we can set the
tolerance € = 1 and assume H = Id, thus reducing to system

2t =z+u. (6)

This system can be treated componentwise, hence it will be sufficient to consider
(6) with z € IR. To deal with problem II we introduce the following problems.
Consider system (6) and fix integers m > 0, N > 0 and M > 0. Our aim is to
study, for every integer control set W = {0,%wvy,..., v}, the reachable set
R(0,N) from the origin in N steps . More precisely we want to determine the
maximal M such that the interval of integers I(M) = [-M,—-M+1,... . M]C Z
is contained in R(0, N).
We can thus state three significant problems:

Problem 1. Given a fixed number m and a symmetric interval of integers I (M),
find the minimal number N of steps and the set of 2m + 1 control values to
completely fill (M) in at most N steps.



Problem 2. Given a fixed number N of steps and a symmetric interval of in-
tegers I(M), find the minimal m such that there exists a control set with
2m + 1 elements which completely fills I(M) in at most N steps.

Problem 3. Given a fixed number m and N of steps, find the optimal choice
of 2m + 1 control values to completely fill a maximal symmetric interval of
integers I(M) in at most N step.

Notice that each problem is obtained fixing two of the three parameters m, N and
M and optimizing over the other two. To treat Problem II, Problems 1 and 2 are
relevant: in both cases M is fixed and the optimization reduces the specification
complexity. However, it is exactly Problem 3 which is mostly treatable. Thus we
now focus on Problem 3 and, later, derive some information on Problems 1 and
2 from the solution of Problem 3.

Problem 3 is a number theoretical problem, related but not equivalent to the
well-known “Frobenius postage stamp problem”. More precisely, the postage
problem seeks to maximize the minimum postage fee not realizable using stamps
from a finite set of m possible denominations. For the classical postage problem,
only results for small values of m are known, see [13]. The main difference with
Problem 3 is the positivity of stamp denominations, while control values from W
are also negative. Although this difference has substantial technical implications,
the difficulty of the two problems is comparable.

Problem 3 was first studied in [5], then solved for m = 2,3,4 and any N in [7],
where a general asymptotic formula was conjectured for every m. We report here
the explicit formulae for the optimal choice of controls for m = 2,3. For m = 2
we simply obtain vy = N and vy = N + 1. For m = 3 we get:

[ N2/443/2N +5/4 if N is odd
YT AUN2/44+3/2N+1  if N is even,

’02:’03—17

o — Ug—%—l if N is odd
1= vs— & =2 if Nis even.

Table 1 reports the maximum interval of the horizontal line which can be covered
with unit resolution and different word lengths N, along with the actual values
of the different control sets, for m = 3 and m = 4.

For m = 2,3,4 and N >> m, for the largest value in W it holds asymptoti-
cally vy, ~ (%)(m_l). Given 2m + 1 controls one can thus reach in IV steps a
region of size

M ~ N™/m™. (7)

In [7], it is conjectured that (7) holds for every m.

Consider now again Problem 1. In this case m and M are fixed. From (7), we
know that we can cover I(M), taking the 2m + 1 optimal control values for
Problem 3, in

N~mMm= (8)



(V[A[2]3]4]5[ 6] 7]
n[[1[3]5]8[11]15] 19
v, 2[4 (7 [10[14] 18 | 23
vs |35 8 [11]15] 19| 24
M |[3[10[24]44]75]114[ 168
(M[A[2]3]4]5[6]7]
i [[1[3]7[13]19]29 41
v, |[2[6 9 (18] 27| 36 | 52
vs |37 [11]20] 29[ 39 | 55
va |48 [1221] 30 [ 40 | 56
M |[4[16[36[84[150]240[392

Table 1. Optimal interval-filling input values for system (6) for m = 3 (above) and
m = 4 (below).

steps. This gives an approximate solution to Problem 1.

On the other hand, for Problem 2 (now N and M are fixed), taking the 2m + 1
optimal control values for Problem 3, we can cover I(M) in N steps using 2m+1
controls where

me~ —. 9)

Again this gives an approximate solution to Problem 2.

To efficiently solve Problem IT we need to reduce the specification complexity of
finite plans. In order to achieve that we may either use the solution to Problem
1 or to Problem 2 In both cases, to describe plans covering the region of size M,
a sequence of length N of symbols from an alphabet of size 2m + 1 should be
given. This results on a specification complexity of N [logy(2m + 1)]. Therefore
we immediately get the following:

Proposition 2. Using the (approzimate) solutions to Problems 1 and 2, we can
cover the region I(M) by finite plans with specification complezities asymptoti-
cally given by (respectively):

m M [logy(2m +1)], (10)
N [logz(]\ij\i +1)—‘ (11)

Clearly the two expressions (10) and (11) have the same asymptotic behavior
(for M — o), thus we focus on the first which depends only on two parameters
m and M.

One can check, by formal computations, that (10) admits a minimum in m. We
report in figure 1 the graph of (10) for M = 103: note the discontinuities pro-
duced by the function [-]. An exact expression for the minimum is not possible,
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Fig. 1. Graph of (10) for M = 1000.

however we can compute the derivative of (10) (replacing the function [-] with
the identity) and thus obtaining:

1

% <ln(2m—|— 1) <1 - lan@) * 27571 1) '

From this expression, we see that the optimal value m* satisfies m* < In(M).
Finally, replacing this value in (10) we obtain:

Proposition 3. Using the (approximate) solutions to Problems 1, the specifica-
tion complexity asymptotically satisfies:

C < In(M) M= [log,(2 In(M) +1)]

A compact representation of control sequences is obtained by using Run—
Length Encoding (RLE). RLE consists in replacing repeated runs of a single
symbol in an input stream by a single instance of the symbol and a run count.
This compression method is particularly well suited for our method, because
of the commutativity of symbols in control strings. In fact, we can assign, for
each possible control value, an integer of size at most N, specifying how many
times the corresponding control must be used. In this way, the control sequence
requires (2m + 1)[log,(N)] bits, or rather, by exploiting the symmetry of the
symbol set and using sign-magnitude representation, (m+1) (1 + [log,(N + 1)])
bits. (We are assuming that control values are already computed off-line.) Using
Proposition 3 and again (7), we thus get:

Proposition 4. For Problem II, using feedback encoding, the approximate so-
lution to Problem 1 and RLE, the specification complexity C satisfies:

C~ (m+1) (1 + log,(mM™ + 1)1) (12)
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Fig. 2. Graph of (12) for M = 1000.

We can study this expression as above to determine an optimal value m* of m:
see in figure 2 the graph of (12) for M = 103. However, in this case we can only
estimate m* = o(ln(M)), thus

C = o(In(M)) log(o(In(M)) M)

3 Feedback Encoding for flat systems

Feedback encoding consists in associating to each symbol a control input w that
depends on the symbol itself, on the current state of the system, and on its
structure. If the encoding incorporates memory elements, e.g. additional states
¢ are used to define the feedback, the feedback encoding is referred to as dynamic.
The method of feedback encoding avails symbolic control with powerful results
from the literature on feedback equivalence of dynamical systems. We show how
this can be exploited to apply the planning method of theorem 1 to the rather
general class of flat systems.
We start treating the case of linear systems:

&= Fz+ Gu (13)

with € R™, w € U = R" and rank G = r. Application to (13) of piecewise
constant encoding of symbolic inputs with durations T; = T, Vi, generates the
discrete-time linear system

r" = Ax + Bu, (14)

with A =ef'T, B = (fOT eT=9)F )G, Let us recall the definition of Brunovsky
form (see e.g. [19]). For a controllable system (14), there exist a change of co-
ordinates S in the state space and V in the input space, and a linear feedback



matrix Ko such that the new system with drift A =S (A+ BK;)S and control
matrix B = ST'BV has the following properties. The state £ = S~'2 can be

split in r subvectors £ = (&1, ...,&,) for which the dynamics are written as
§i= A& +bovl, i=1,...,1 (15)
where §; € R"™,
001 -0 0
A, = € RF ¥k by, = € R™,
00--- 01 (1)
00--- 00

vie Rand > !, k; =n.

Theorem 2. For a controllable linear discrete-time system x+ = Ax+Bu, there
exists an integer £ > 1 and a linear feedback encoding E : o; — Kx + w; with
constant K € R™" and w; € W, W C R" a quantized control set, such that,
for all subsequences of period {T extracted from x(-), the reachable set is a lattice
of arbitrarily fine mesh. In other words the all controllable linear discrete-time
systems are additively approachable.

We recall preliminarily a result which can be derived directly from [2].

Lemma 1. The reachable set of the scalar discrete time linear system £+ = £+v,
EeR, veW:=AW with v > 0 and W = {0, tw, ..., Twy}, w; € N with at
least two elements w; w; coprime, is a lattice of mesh size 7.

Proof. Theorem 2.
For the controllable pair (4, B), let S, V, and K, be matrices such that (S~!(A+
BK()S, ST'BV) is in Brunovsky form. Let v = K1 + v, where:

—vEW =W x - x5 "W, with *W = {0, +Fwy, ..., £Fw,,, }, Fuw; € N
k=1,...,r,j=1,...,my, each IV including at least two coprime elements
Fa; B,

— K; € R™" such that its i—th row (denoted Ki;) contains all zeroes except
for the element in the (x;—1 + 1)—th column which is equal to one (recall that
by definition kg = 0).

Using notation as in (15), it can be easily observed that (A, + By, K1;)" = IL,,
the x; x k; identity matrix. Hence, if we let £ = l.c.m. {k; : 4 =1,...,7}, we get
[S~Y((A+ BK()S + BVE;)] = I..
Let & € IR™ denote the i—th component of the state vector relative to the pair
(Ay,, Bg,;). For any 7 € IN we have & (7 +k;) = &(7) 4+ [vi(7), ..., v (T + ki — 1)].
On the longer period of /T, we have

Gi(r+10) = &(r)+

L :
Z,:;Ol vi(T + ki — 1+ kk;)
=& (1) + vi(7),
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hence, in the initial coordinates,
x(t+ L) = z(1) + So.

It is also clear that, for any ¢, it is possible to choose I" such that z can be driven
in a finite number of steps (multiple of £) to within an e-neighborhood of any
point in R".

Let us now pass to treat a general system (1) and let the equilibrium set be
E ={x € X|3u € U, f(x,u) = 0}. The focus on equilibria is consistent with
usual practice in control, where equilibrium configurations typically correspond
to nominal working conditions for a system (possibly up to group symmetries,
see e.g. [12]).
Among systems with drift, linear systems are the simplest, yet their analysis
encompasses the key features and difficulties of planning. Indeed, our strategy
to attack the general case consists of reducing to planning for linear systems via
feedback encoding. To achieve this, we introduce a further generalized encoder
(still encompassed by the above definition of control quanta), i.e. the nested
feedback encoding described in fig. 3. In this case, an inner continuous (possibly
dynamic) feedback loop and an outer discrete-time loop — both embedded on
the remote system — are used to achieve richer encoding of transmitted symbols.
Since additive approachability for linear systems is proved in theorem 2, using
nested feedback encoding, all feedback linearizable systems are hence additively
approachable. Recalling results from [11], we can state the following

Theorem 3. Every differentially flat system is locally additively approachable.

4 Example

We illustrate the power of the proposed method by solving the steering problem
for an example in the class of underactuated mechanical systems, which have
attracted wide attention in the recent literature (see e.g. [8]).

In particular, we consider the class of underactuated mechanisms identified as
“(n—1)X, — Ry planar robots”, i.e. mechanisms having n—1 active joints of any



type, and a passive rotational joint. In order to simplify the model analysis and
control design, it is convenient to use a specific set of generalized coordinates.
In particular, let ¢ = (q1, ..., gn—3, 2,4, 0) = (ga, ) where (z,y) are the cartesian
coordinates of the base of the last link. Assuming motion in a horizontal plane
(or zero gravity), the dynamic model takes on the partitioned form

O(n—3)x1 )
Ba(Qa) *mndnSQ qa
+
My dnCo )
01><(n—3) _mndnSO mndnce In + mndi 0
+ Ca(Qa Q) _ F, (16)
0 0

where F, = (Fi, ..., F,—3, F;, F}) are the generalized forces performing work on
the ¢, coordinates, sg = sinf and ¢y = cosf. For the n—th link, I,,, m,, and d,
are the baricentral inertia, the mass and the distance of the center of mass from
its base.

In order to make the analysis independent from the nature of the n —1 active
joints, the relative dynamics in (16) can be linearized via a globally defined
partial static feedback, thus reducing them to a chain of two integrators per
actuated joint. The dynamics of the coordinates ¢;, i = 1, ...,n—3 are completely
decoupled from the dynamics of the remaining coordinates (x,y, #). Therefore,
we will henceforth only consider the case n = 3. Following [8], we choose the
cartesian coordinates of the center of percussion as the system’s (flat) outputs:

)= [l e e 1) n

The dynamics of the system after the dynamic feedback linearization are written
as y£4) = vy, y§4) = vy. Choosing a sample time ¢ = 1s we obtain the following

discrete time linear system:

x;” = Ax; + Bv; =

1111 =
0111 3

= 2+ | § |
0011 i
0001 1

where x; = (yi, yfl), yi@), yfg) ), i = 1,2. Being each subsystem controllable,

there exist S such that (S~'AS,S~1B) is in control canonical form. For each
subsystem in control canonical form, the set of equilibria is given by {aly €
R*: a € R}. Then, in the initial coordinates, the set of equilibria is given
by {aS1, € R* : @ € R}. For a given a € R we obtain the equilibrium aly



Fig. 4. An underactuated robot arm of type 2R, — R,, used in example 2: the given
initial and final configurations are shown by dashed and solid lines, respectively.

for the control canonical form and the equilibrium («,0,0,0) for the original
subsystem, hence a constant position of the considered coordinate of the center
of percussion. The scale factor is 1 in this case.

To obtain a reachable lattice of size v1,v2 > 0, 'W, 2W can be chosen to be
any finite sets of integers, such that at least two of its elements are coprime, and
and inputs scaled as ‘v € v; ‘W, i =1,2.

Given an initial robot pose (y1,y2,6) = (0,0,0), consider three maneuvers:
translation along the x axis, translation along the straight line y = x and trans-
lation along the y axis. The first one can be achieved with a single symbol w
applied on the input ‘v for n = 4 periods. The second maneuver is similar to
the first one: we apply the previous command on the two inputs 'v and 2v for
n = 4 periods. We can split the third maneuver in two maneuvers of the previous
types.

Initial and final positions of a 3R robot are shown in fig. 4. Simulations were
performed setting (1 = (2 = 3m, Kgp = 1m, T = 1s, and w = 0.8m/s?. Fig. 5
shows the coordinates of the Center of Percussion of the last link while fig. 6
shows the angles of the active joints and the orientation of the last passive link,
respectively.

5 Conclusions

In this paper, we addressed the issue of designing efficient finite plans to steer
controlled dynamical systems. Efficiency is measured by specification and com-
putational complexities.

Via suitable feedback encoding, based on control quanta, we showed how to
reduce flat systems to a special form. Once this is obtained, we can use number-
theoretic results to improve efficiency. It seems fair to affirm that few practically
interesting classes of controllable systems remain outside the scope of application
of the presented methods.

Connections to state observers in planning are unexplored at this stage.
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Fig. 5. Coordinates y1 (left) and y2 (right) of the center of percussion
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Fig. 6. Active joints angles (left) and orientation of the last passive link (right)
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